Synchronization of different fractional order chaotic systems using active control

被引:198
作者
Bhalekar, Sachin [1 ]
Daftardar-Gejji, Varsha [1 ]
机构
[1] Univ Pune, Dept Math, Pune 411007, Maharashtra, India
关键词
Caputo derivative; Synchronization; Fractional order dynamical systems; Active control; Predictor-corrector method; ADAPTIVE SYNCHRONIZATION; DYNAMICAL-SYSTEMS; ROSSLER; EQUATIONS; SIGNALS; SCHEME;
D O I
10.1016/j.cnsns.2009.12.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Synchronization of fractional order chaotic dynamical systems is receiving increasing attention owing to its interesting applications in secure communications of analog and digital signals and cryptographic systems In this article we utilize active control technique to synchronize different fractional order chaotic dynamical systems. Further we investigate the interrelationship between the (fractional) order and synchronization in different chaotic dynamical systems It is observed that synchronization is faster as the order tends to one (C) 2009 Elsevier B V All rights reserved
引用
收藏
页码:3536 / 3546
页数:11
相关论文
共 68 条
[1]   Synchronization of Rossler and Chen chaotic dynamical systems using active control [J].
Agiza, HN ;
Yassen, MT .
PHYSICS LETTERS A, 2001, 278 (04) :191-197
[2]   Solution for a fractional diffusion-wave equation defined in a bounded domain [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :145-155
[3]   THE FRACTIONAL-ORDER DYNAMICS OF BRAIN-STEM VESTIBULOOCULOMOTOR NEURONS [J].
ANASTASIO, TJ .
BIOLOGICAL CYBERNETICS, 1994, 72 (01) :69-79
[4]  
[Anonymous], 2006, THEORY APPL FRACTION
[5]  
[Anonymous], 2006, AUST J MATH ANAL APP
[6]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[7]  
[Anonymous], 2001, APPL FRACTIONAL CALC
[8]   Synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 1997, 8 (01) :51-58
[9]   Sequential synchronization of two Lorenz systems using active control [J].
Bai, EW ;
Lonngren, KE .
CHAOS SOLITONS & FRACTALS, 2000, 11 (07) :1041-1044
[10]   Fractional ordered Liu system with time-delay [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (08) :2178-2191