Transmission and reflection mode scanning microwave microscopy (SMM): experiments, calibration, and simulations

被引:0
作者
Medina, Pablo F. [1 ]
Lucibello, Andrea [2 ]
Gramse, Georg [3 ]
Brinciotti, Enrico [1 ]
Kasper, Manuel [3 ]
Oladipo, A. O. [4 ,5 ]
Feger, Reinhard [6 ]
Stelzer, Andreas [6 ]
Tanbakuchi, Hassan [7 ]
Stancliff, Roger [7 ]
Proietti, Emanuela [2 ]
Marcelli, Romolo [2 ]
Kienberger, Ferry [1 ]
机构
[1] Keysight Technol Austria, Keysight Labs, Gruberstr 40, A-4020 Linz, Austria
[2] CNR, Inst Microelect & Microsyst, I-00133 Rome, Italy
[3] JKU, Inst Biophys, A-4020 Linz, Austria
[4] Bionano Consulting, London N1C 4AG, England
[5] UCL, Elect & Elect Engn Dept, London WC1E 7JE, England
[6] JKU, Inst Commun Engn & RF Syst, A-4040 Linz, Austria
[7] Keysight Technol, Santa Rosa, CA 95403 USA
来源
2015 45TH EUROPEAN MICROWAVE CONFERENCE (EUMC) | 2015年
关键词
scanning microwave microscopy; transmission; nanoscale; microwave;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Reflection mode scanning microwave microscopy (SMM) is compared to a newly developed transmission mode imaging hardware for extended scattering S11 and S12 measurements. Transmission mode imaging is realized by an SMA connector placed below the sample to excite an electromagnetic wave towards the cantilever acting as nanoscale-sized receiver structure. The frequency response was investigated between 1-20 GHz and a circuitry model of the SMM matching network was combined with a 3D finite element model of the tip-sample system. Modeling results include the local 3D electric field distribution around the nanoscale cantilever tip in contact to the sample. Reflection mode measurements were calibrated using a simple three error-parameter workflow allowing for quantitative impedance and capacitance imaging. A qualitative agreement was obtained between measurements and SMM models for both S11 and S12.
引用
收藏
页码:654 / 657
页数:4
相关论文
共 16 条
[1]  
Farina M., 2011, IEEE T MICROW THEORY, V59, P7
[2]  
Feenstra B. J., 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192), P965, DOI 10.1109/MWSYM.1998.705152
[3]   Calibrated complex impedance and permittivity measurements with scanning microwave microscopy [J].
Gramse, G. ;
Kasper, M. ;
Fumagalli, L. ;
Gomila, G. ;
Hinterdorfer, P. ;
Kienberger, F. .
NANOTECHNOLOGY, 2014, 25 (14)
[4]   Quantitative sub-surface and non-contact imaging using scanning microwave microscopy [J].
Gramse, Georg ;
Brinciotti, Enrico ;
Lucibello, Andrea ;
Patil, Samadhan B. ;
Kasper, Manuel ;
Rankl, Christian ;
Giridharagopal, Rajiv ;
Hinterdorfer, Peter ;
Marcelli, Romolo ;
Kienberger, Ferry .
NANOTECHNOLOGY, 2015, 26 (13)
[5]  
Hoffmann J., 2012, NANOTECHNOLOGY IEEE
[6]   Measuring low loss dielectric substrates with scanning probe microscopes [J].
Hoffmann, Johannes ;
Gramse, Georg ;
Niegemann, Jens ;
Zeier, Markus ;
Kienberger, Ferry .
APPLIED PHYSICS LETTERS, 2014, 105 (01)
[7]   Near-Field Scanning Microwave Microscopy [J].
Imtiaz, Atif ;
Wallis, Thomas Mitchell ;
Kabos, Pavel .
IEEE MICROWAVE MAGAZINE, 2014, 15 (01) :52-64
[8]   Near-field microwave microscope measurements to characterize bulk material properties [J].
Imtiaz, Atif ;
Baldwin, Thomas ;
Nembach, Hans T. ;
Wallis, Thomas M. ;
Kabos, Pavel .
APPLIED PHYSICS LETTERS, 2007, 90 (24)
[9]   Quadraxial probe for high resolution near-field scanning rf/microwave microscopy [J].
Karbassi, A. ;
Paulson, C. A. ;
Kozyrev, A. B. ;
Banerjee, M. ;
Wang, Y. ;
van der Weide, D. W. .
APPLIED PHYSICS LETTERS, 2006, 89 (15)
[10]  
Kazuhisa T., 2012, J APPL PHYS, V112