Selection of Optimal Number of Clusters and Centroids for K-means and Fuzzy C-means Clustering: A Review

被引:12
作者
Pugazhenthi, A. [1 ]
Kumar, Lakshmi Sutha [2 ]
机构
[1] Natl Inst Technol Puducherry, Dept Elect & Ommunicat Engn, Karaikal, India
[2] Natl Inst Technol Puducherry, Dept Elect & Commun Engn, Karaikal, India
来源
PROCEEDINGS OF THE 2020 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND SECURITY (ICCCS-2020) | 2020年
关键词
Image segmentation; k-means clustering; fuzzy c-means clustering; centroids; ALGORITHM;
D O I
10.1109/icccs49678.2020.9276978
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In image segmentation, clustering is the process of sub dividing the whole image into the meaningful sub images. The most commonly used image segmentation algorithms such as K-means and Fuzzy c-means clustering face the specific important problem in selecting the optimal number of clusters and the corresponding cluster centroids. Plenty of research works have been done on the limitations of the said clustering algorithms to improve the efficient isolation of clusters. This paper enumerates the works done by different researchers in selecting the initial number of clusters and the centroids using K-means and Fuzzy c-means clustering. The limitations and applications of the above mentioned clustering algorithms are explored.
引用
收藏
页数:4
相关论文
共 23 条
[1]   Divisive Correlation Clustering Algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles [J].
Bhattacharya, Anindya ;
De, Rajat K. .
BIOINFORMATICS, 2008, 24 (11) :1359-1366
[2]  
Cufí X, 2002, ADV IMAG ELECT PHYS, V120, P1
[3]   Recovering the number of clusters in data sets with noise features using feature rescaling factors [J].
de Amorim, Renato Cordeiro ;
Hennig, Christian .
INFORMATION SCIENCES, 2015, 324 :126-145
[4]  
Fahim A., 2006, J. Zhejiang Univ.-Sci. A, V7, P1626, DOI [DOI 10.1631/JZUS.2006.A1626, 10.1631/jzus.2006.A1626]
[5]  
Gonzalez RC, 2018, Digital image processing, V4th
[6]   Data clustering: A review [J].
Jain, AK ;
Murty, MN ;
Flynn, PJ .
ACM COMPUTING SURVEYS, 1999, 31 (03) :264-323
[7]  
Kumar Lakshmi Sutha, 2020, 2020 IEEE INT C SYST
[8]   Agglomerative fuzzy K-Means clustering algorithm with selection of number of clusters [J].
Li, Mark Junjie ;
Ng, Michael K. ;
Cheung, Yiu-ming ;
Huang, Joshua Zhexue .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (11) :1519-1534
[9]  
Mahmud M. S., 2012, 2012 7th International Conference on Electrical & Computer Engineering (ICECE), P647, DOI 10.1109/ICECE.2012.6471633
[10]   Automatic Fuzzy Clustering Using Modified Differential Evolution for Image Classification [J].
Maulik, Ujjwal ;
Saha, Indrajit .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (09) :3503-3510