Seamless integration of elliptic Dirichlet-to-Neumann boundary condition and high order spectral element method for scattering problem

被引:1
作者
Zhang, Rui [1 ]
Wang, Bo [1 ]
Xie, Ziqing [1 ]
机构
[1] Hunan Normal Univ, LCSM MOE, Sch Math & Stat, Changsha 410081, Hunan, Peoples R China
关键词
Scattering problem; Helmholtz equation; Spectral element method; Elliptic Dirchlet-to-Neumann boundary condition; Semi-analytic formula; Mathieu expansion; PERFECTLY MATCHED LAYER;
D O I
10.1007/s13160-019-00383-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a semi-analytic approach to enhance the integration of elliptic Dirichlet-to-Neumann (DtN) boundary condition and high order spectral element method in solving scattering problem with slender scatterer. By using appropriate elemental mapping in the spectral element discretization, semi-analytic formulas are obtained for the computation of Mathieu expansion coefficients involved in the global DtN operator. Further, a semi-analytic approach is proposed for the computation of global boundary integral terms in the spectral element discretization. The proposed semi-analytic formulas can also be used to calculate Mathieu expansion coefficients for functions given values on spectral element grids. Numerical examples show that spectral element method with the proposed semi-analytic approach can produce high order numerical solution for scattering problem with slender scatterer.
引用
收藏
页码:1129 / 1148
页数:20
相关论文
共 31 条
[1]  
Arfken G, 2012, MATH METHODS PHYS
[2]  
Astley RJ, 2000, INT J NUMER METH ENG, V49, P951, DOI 10.1002/1097-0207(20001110)49:7<951::AID-NME989>3.0.CO
[3]  
2-T
[4]  
Bateman H., 1954, TABLES INTEGRAL TRAN
[5]   SOLUTION OF UNBOUNDED DOMAIN PROBLEMS USING ELLIPTIC ARTIFICIAL BOUNDARIES [J].
BENPORAT, G ;
GIVOLI, D .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1995, 11 (09) :735-741
[6]   An adaptive perfectly matched layer technique for time-harmonic scattering problems [J].
Chen, ZM ;
Liu, XZ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (02) :645-671
[7]  
Ciskowski R.D., 1991, BOUNDARY ELEMENT MET
[8]  
Clarkr CW., 2010, Nist Handbook of Mathematical Functions
[9]   The perfectly matched layer in curvilinear coordinates [J].
Collino, F ;
Monk, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (06) :2061-2090
[10]  
Colton D, 2013, CLASS APPL MATH