Edge effects on the electronic properties of phosphorene nanoribbons

被引:163
作者
Peng, Xihong [1 ]
Copple, Andrew [2 ]
Wei, Qun [1 ,3 ]
机构
[1] Arizona State Univ, Sch Letters & Sci, Mesa, AZ 85212 USA
[2] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA
[3] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Peoples R China
关键词
LAYER BLACK PHOSPHORUS; TOTAL-ENERGY CALCULATIONS; FIELD-EFFECT TRANSISTORS; AUGMENTED-WAVE METHOD; BASIS-SET; MOBILITY;
D O I
10.1063/1.4897461
中图分类号
O59 [应用物理学];
学科分类号
摘要
Two dimensional few-layer black phosphorus crystal structures have recently been fabricated and have demonstrated great potential in electronic applications. In this work, we employed first principles density functional theory calculations to study the edge and quantum confinement effects on the electronic properties of the phosphorene nanoribbons (PNR). Different edge functionalization groups, such as H, F, Cl, OH, O, S, and Se, in addition to a pristine case were studied for a series of ribbon widths up to 3.5 nm. It was found that the armchair-PNRs (APNRs) are semiconductors for all edge groups considered in this work. However, the zigzag-PNRs (ZPNRs) show either semiconductor or metallic behavior in dependence on their edge chemical species. Family 1 edges (i.e., H, F, Cl, OH) form saturated bonds with P atoms in the APNRs and ZPNRs, and the edge states keep far away from the band gap. However, Family 2 edges (pristine, O, S, Se) form weak unsaturated bonds with the pz orbital of the phosphorus atoms and bring edge states within the band gap of the ribbons. For the ZPNRs, the edge states of Family 2 are present around the Fermi level within the band gap, which close up the band gap of the ZPNRs. For the APNRs, these edge states are located at the bottom of the conduction band and result in a reduced band gap. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 26 条
[1]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[2]   REFINEMENT OF CRYSTAL STRUCTURE OF BLACK PHOSPHOROUS [J].
BROWN, A ;
RUNDQVIST, S .
ACTA CRYSTALLOGRAPHICA, 1965, 19 :684-+
[3]   Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors [J].
Buscema, Michele ;
Groenendijk, Dirk J. ;
Blanter, Sofya I. ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Castellanos-Gomez, Andres .
NANO LETTERS, 2014, 14 (06) :3347-3352
[4]  
Carvalho A., ARXIV14045115
[5]   Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells [J].
Dai, Jun ;
Zeng, Xiao Cheng .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (07) :1289-1293
[6]   Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus [J].
Fei, Ruixiang ;
Yang, Li .
NANO LETTERS, 2014, 14 (05) :2884-2889
[7]   Phosphorene Nanoribbons, Phosphorus Nanotubes, and van der Waals Multilayers [J].
Guo, Hongyan ;
Lu, Ning ;
Dai, Jun ;
Wu, Xiaojun ;
Zeng, Xiao Cheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (25) :14051-14059
[8]   SELF-CONSISTENT EQUATIONS INCLUDING EXCHANGE AND CORRELATION EFFECTS [J].
KOHN, W ;
SHAM, LJ .
PHYSICAL REVIEW, 1965, 140 (4A) :1133-&
[9]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[10]   From ultrasoft pseudopotentials to the projector augmented-wave method [J].
Kresse, G ;
Joubert, D .
PHYSICAL REVIEW B, 1999, 59 (03) :1758-1775