Hopf algebras arising from dg manifolds

被引:3
作者
Cheng, Jiahao [1 ]
Chen, Zhuo [2 ]
Ni, Dadi [2 ]
机构
[1] Nanchang Hangkong Univ, Coll Math & Informat Sci, Nanchang, Jiangxi, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing, Peoples R China
关键词
Atiyah class; Dg manifold; Hopf algebra; HKR-theorem; Fedosov dg manifold; ROZANSKY-WITTEN INVARIANTS; FORMALITY THEOREM; LIE; COHOMOLOGY; GEOMETRY;
D O I
10.1016/j.jalgebra.2021.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, Q) be a dg manifold. The space of vector fields with shifted degrees (X(M)[-1], L-Q) is a Lie algebra object in the homology category H((C-M(infinity), Q)-mod) of dg modules over (M, Q), the Atiyah class alpha(M) being its Lie bracket. The triple (X(M)[-1], L-Q; alpha(M)) is also a Lie algebra object in the Gabriel-Zisman homotopy category Pi((C-M(infinity), Q)-mod). In this paper, we describe the universal enveloping algebra of (X(M)[-1], L-Q; alpha(M)) and prove that it is a Hopf algebra object in Pi((C-M(infinity), Q)-mod). As an application, we study Fedosov dg Lie algebroids and recover a result of Stienon, Xu, and the second author on the Hopf algebra arising from a Lie pair. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:19 / 68
页数:50
相关论文
共 39 条
  • [21] Laurent-Gengoux Camille, POINCARE BIRKHOFF WI
  • [22] Formality and Kontsevich-Duflo type theorems for Lie pairs
    Liao, Hsuan-Yi
    Stienon, Mathieu
    Xu, Ping
    [J]. ADVANCES IN MATHEMATICS, 2019, 352 : 406 - 482
  • [23] Formal Exponential Map for Graded Manifolds
    Liao, Hsuan-Yi
    Stienon, Mathieu
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (03) : 700 - 730
  • [24] Formality theorem for differential graded manifolds
    Liao, Hsuan-Yi
    Stienon, Mathieu
    Xu, Ping
    [J]. COMPTES RENDUS MATHEMATIQUE, 2018, 356 (01) : 27 - 43
  • [25] Formality theorem for g-manifolds
    Liao, Hsuan-Yi
    Stienon, Mathieu
    Xu, Ping
    [J]. COMPTES RENDUS MATHEMATIQUE, 2017, 355 (05) : 582 - 589
  • [26] Ehresmann doubles and Drinfel'd doubles for Lie algebroids and Lie bialgebroids
    Mackenzie, Kirill C. H.
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 658 : 193 - 245
  • [27] The Atiyah class, Hochschild cohomology and the Riemann-Roch theorem
    Markarian, Nikita
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 : 129 - 143
  • [28] The Atiyah class of a dg-vector bundle
    Mehta, Rajan Amit
    Stienon, Mathieu
    Xu, Ping
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (04) : 357 - 362
  • [29] Matched pairs of Lie algebroids
    Mokri, T
    [J]. GLASGOW MATHEMATICAL JOURNAL, 1997, 39 : 167 - 181
  • [30] Molino P., 1971, C R ACAD SCI PARIS A, V272, pA779