Hopf algebras arising from dg manifolds

被引:3
作者
Cheng, Jiahao [1 ]
Chen, Zhuo [2 ]
Ni, Dadi [2 ]
机构
[1] Nanchang Hangkong Univ, Coll Math & Informat Sci, Nanchang, Jiangxi, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing, Peoples R China
关键词
Atiyah class; Dg manifold; Hopf algebra; HKR-theorem; Fedosov dg manifold; ROZANSKY-WITTEN INVARIANTS; FORMALITY THEOREM; LIE; COHOMOLOGY; GEOMETRY;
D O I
10.1016/j.jalgebra.2021.05.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, Q) be a dg manifold. The space of vector fields with shifted degrees (X(M)[-1], L-Q) is a Lie algebra object in the homology category H((C-M(infinity), Q)-mod) of dg modules over (M, Q), the Atiyah class alpha(M) being its Lie bracket. The triple (X(M)[-1], L-Q; alpha(M)) is also a Lie algebra object in the Gabriel-Zisman homotopy category Pi((C-M(infinity), Q)-mod). In this paper, we describe the universal enveloping algebra of (X(M)[-1], L-Q; alpha(M)) and prove that it is a Hopf algebra object in Pi((C-M(infinity), Q)-mod). As an application, we study Fedosov dg Lie algebroids and recover a result of Stienon, Xu, and the second author on the Hopf algebra arising from a Lie pair. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:19 / 68
页数:50
相关论文
共 39 条
  • [1] The geometry of the master equation and topological quantum field theory
    Alexandrov, M
    Schwarz, A
    Zaboronsky, O
    Kontsevich, M
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (07): : 1405 - 1429
  • [2] Atiyah M.F., 1957, Trans. Amer. Math. Soc., V85, P181
  • [3] Shifted Derived Poisson Manifolds Associated with Lie Pairs
    Bandiera, Ruggero
    Chen, Zhuo
    Stienon, Mathieu
    Xu, Ping
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 375 (03) : 1717 - 1760
  • [4] Bandiera Ruggero, POLYVECTOR FIELDS PO
  • [5] Atiyah classes and dg-Lie algebroids for matched pairs
    Batakidis, Panagiotis
    Voglaire, Yannick
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 123 : 156 - 172
  • [6] Bott R., 1972, Lectures on Algebraicand Differential Topology, V279, P1
  • [7] Hochschild cohomology and Atiyah classes
    Calaque, Damien
    Van den Bergh, Michel
    [J]. ADVANCES IN MATHEMATICS, 2010, 224 (05) : 1839 - 1889
  • [8] KAPRANOV'S CONSTRUCTION OF SH LEIBNIZ ALGEBRAS
    Chen, Zhuo
    Liu, Zhangju
    Xiang, Maosong
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2020, 22 (01) : 141 - 165
  • [9] From Atiyah Classes to Homotopy Leibniz Algebras
    Chen, Zhuo
    Stienon, Mathieu
    Xu, Ping
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) : 309 - 349
  • [10] A Hopf algebra associated with a Lie pair
    Chen, Zhuo
    Stienon, Mathieu
    Xu, Ping
    [J]. COMPTES RENDUS MATHEMATIQUE, 2014, 352 (11) : 929 - 933