High luminescence in small SiOSiO2 nanocrystals: A theoretical study

被引:46
作者
Guerra, Roberto [1 ,2 ]
Ossicini, Stefano [1 ,3 ,4 ]
机构
[1] CNR, Ist Nanosci, Ctr S3, I-41100 Modena, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Fis, I-41100 Modena, Italy
[3] Univ Modena & Reggio Emilia, Ctr Interdipartimentale En&Tech, I-42100 Reggio Emilia, Italy
[4] Univ Modena & Reggio Emilia, Dipartimento Sci & Metodi Ingn, I-42100 Reggio Emilia, Italy
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 24期
关键词
SILICON-OXIDE MATRIX; SI NANOCRYSTALS; POROUS SILICON; QUANTUM-WELLS; OPTICAL GAIN; PHOTOLUMINESCENCE; NANOPARTICLES; EXCITONS; DOTS; LOCALIZATION;
D O I
10.1103/PhysRevB.81.245307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, many experiments have demonstrated the possibility to achieve efficient photoluminescence from Si/SiO2 nanocrystals. While it is widely known that only a minor portion of the nanocrystals in the samples contributes to the observed photoluminescence, the high complexity of the Si/SiO2 interface and the dramatic sensitivity to the fabrication conditions make the identification of the most active structures at the experimental level not a trivial task. Focusing on this aspect, we have addressed the problem theoretically, by calculating the radiative recombination rates for different classes of Si nanocrystals in the diameter range of 0.2-1.5 nm, in order to identify the best conditions for optical emission. We show that the recombination rates of hydrogenated nanocrystals follow the quantum confinement feature in which the nanocrystal diameter is the principal quantity in determining the system response. Interestingly, a completely different behavior emerges from the OH-terminated or SiO2-embedded nanocrystals, where the number of oxygens at the interface seems intimately connected to the recombination rates, resulting the most important quantity for the characterization of the optical yield in such systems. Besides, additional conditions for the achievement of high rates are constituted by a high crystallinity of the nanocrystals and by high confinement energies (small diameters)
引用
收藏
页数:6
相关论文
共 57 条
[1]   Nature of luminescent surface states of semiconductor nanocrystallites [J].
Allan, G ;
Delerue, C ;
Lannoo, M .
PHYSICAL REVIEW LETTERS, 1996, 76 (16) :2961-2964
[2]   Photoluminescence quantum yields of amorphous and crystalline silicon nanoparticles [J].
Anthony, Rebecca ;
Kortshagen, Uwe .
PHYSICAL REVIEW B, 2009, 80 (11)
[3]   Charge storage, photoluminescence, and cluster statistics in ensembles of Si quantum dots [J].
Antonova, I. V. ;
Gulyaev, M. ;
Savir, E. ;
Jedrzejewski, J. ;
Balberg, I. .
PHYSICAL REVIEW B, 2008, 77 (12)
[4]   Luminescence studies of a Si/SiO2 superlattice [J].
Averboukh, B ;
Huber, R ;
Cheah, KW ;
Shen, YR ;
Qin, GG ;
Ma, ZC ;
Zong, WH .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (07) :3564-3568
[5]   Oxide and hydrogen capped ultrasmall blue luminescent Si nanoparticles [J].
Belomoin, G ;
Therrien, J ;
Nayfeh, M .
APPLIED PHYSICS LETTERS, 2000, 77 (06) :779-781
[6]   Observation of a magic discrete family of ultrabright Si nanoparticles [J].
Belomoin, G ;
Therrien, J ;
Smith, A ;
Rao, S ;
Twesten, R ;
Chaieb, S ;
Nayfeh, MH ;
Wagner, L ;
Mitas, L .
APPLIED PHYSICS LETTERS, 2002, 80 (05) :841-843
[7]   Size-dependent electron-hole exchange interaction in Si nanocrystals [J].
Brongersma, ML ;
Kik, PG ;
Polman, A ;
Min, KS ;
Atwater, HA .
APPLIED PHYSICS LETTERS, 2000, 76 (03) :351-353
[8]   IDENTIFICATION OF RADIATIVE TRANSITIONS IN HIGHLY POROUS SILICON [J].
CALCOTT, PDJ ;
NASH, KJ ;
CANHAM, LT ;
KANE, MJ ;
BRUMHEAD, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (07) :L91-L98
[9]   Optical gain in monodispersed silicon nanocrystals [J].
Cazzanelli, M ;
Navarro-Urriós, D ;
Riboli, F ;
Daldosso, N ;
Pavesi, L ;
Heitmann, J ;
Yi, LX ;
Scholz, R ;
Zacharias, M ;
Gösele, U .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (06) :3164-3171
[10]   External quantum efficiency of single porous silicon nanoparticles [J].
Credo, GM ;
Mason, MD ;
Buratto, SK .
APPLIED PHYSICS LETTERS, 1999, 74 (14) :1978-1980