A New Look at the Stability Analysis of the Finite-Difference Time-Domain Method

被引:4
|
作者
Aksoy, Serkan [1 ]
Ozakin, M. Burak [1 ]
机构
[1] Gebze Inst Technol, Dept Elect Engn, TR-41400 Gebze, Kocaeli, Turkey
关键词
Amplification factor; dispersion; finite difference time domain; stability analysis; stability criteria;
D O I
10.1109/MAP.2014.6821801
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The stability analysis of a numerical time-domain method plays a crucial role in well understanding the numerical behavior of the algorithm. The stability analysis should therefore be investigated in all senses. In this work, a new look at the stability analysis of the Finite-Difference Time-Domain Method is given. A novel link is constructed between the numerical-dispersion analysis and the stability analysis by using the sampled values of the unit space and time steps. Unification of these two analyses therefore becomes possible. The stability criterion is extracted in a simple way, and the amplification factor is formulated. The theoretical findings are tested via a numerical experiment. Some open problems in this area are also discussed.
引用
收藏
页码:293 / 299
页数:7
相关论文
共 50 条
  • [41] Analysis of microstrip crossovers using the nonorthogonal finite-difference time-domain method
    Kitamura, Toshiaki
    Nakamura, Satoru
    Hira, Masafumi
    Kurazono, Sadao
    Electronics and Communications in Japan, Part II: Electronics (English translation of Denshi Tsushin Gakkai Ronbunshi), 1994, 77 (01): : 26 - 34
  • [42] Rigorous electromagnetic analysis of Talbot effect with the finite-difference time-domain method
    Lu, YQ
    Zhou, CH
    Optical Design and Testing II, Pts 1 and 2, 2005, 5638 : 108 - 116
  • [43] A novel high accuracy finite-difference time-domain method
    Sekido, Harune
    Umeda, Takayuki
    EARTH PLANETS AND SPACE, 2024, 76 (01):
  • [44] Unconditionally stable implicit finite-difference time-domain method
    Gao, Wen-Jun
    Lu, Shan-Wei
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2002, 30 (06): : 900 - 902
  • [45] A DISTRIBUTED IMPLEMENTATION OF THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD
    RODOHAN, DP
    SAUNDERS, SR
    GLOVER, RJ
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 1995, 8 (3-4) : 283 - 291
  • [46] THE FINITE-DIFFERENCE TIME-DOMAIN METHOD APPLIED TO ANISOTROPIC MATERIAL
    SCHNEIDER, J
    HUDSON, S
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1993, 41 (07) : 994 - 999
  • [47] ANALYSIS OF CYLINDRICAL MICROSTRIP LINES UTILIZING THE FINITE-DIFFERENCE TIME-DOMAIN METHOD
    KITAMURA, T
    KOSHIMAE, T
    HIRA, M
    KURAZONE, S
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1994, 42 (07) : 1279 - 1282
  • [48] ANALYSIS OF MICROSTRIP CROSSOVERS USING THE NONORTHOGONAL FINITE-DIFFERENCE TIME-DOMAIN METHOD
    KITAMURA, T
    NAKAMURA, S
    HIRA, M
    KURAZONO, S
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART II-ELECTRONICS, 1994, 77 (01): : 26 - 34
  • [49] Numerical analysis of the whispering gallery modes by the finite-difference time-domain method
    Li, BJ
    Liu, PL
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1996, 32 (09) : 1583 - 1587
  • [50] ELECTROMAGNETIC MODELING USING THE FINITE-DIFFERENCE TIME-DOMAIN METHOD
    DUCEAU, E
    RECHERCHE AEROSPATIALE, 1994, (05): : 301 - 317