Error Bounds, Calmness and their Applications in Nonsmooth Analysis

被引:0
|
作者
Penot, Jean-Paul [1 ]
机构
[1] Univ Pau, Dept Math, CNRS UMR 5142, Fac Sci, F-64013 Pau, France
来源
NONLINEAR ANALYSIS AND OPTIMIZATION II: OPTIMIZATION | 2010年 / 514卷
关键词
calmness; coderivative; conditioning; decrease index; error bound; normal cone; subdifferential; subregularity; LOWER SEMICONTINUOUS FUNCTIONS; METRIC REGULARITY; STABILITY; MAPPINGS; SUBDIFFERENTIALS; CALCULUS; POINTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present criteria for linear and nonlinear error bounds for lower semicontinuous functions on Banach spaces. We apply these criteria to various metric estimates which allow to give calculus rules for normal cones and subdifferentials.
引用
收藏
页码:225 / 247
页数:23
相关论文
共 50 条
  • [1] On applications of the calmness moduli for multifunctions to error bounds
    Wei, Zhou
    Yao, Jen-Chih
    OPTIMIZATION, 2022, 71 (12) : 3647 - 3668
  • [2] Calmness and error bounds for convex constraint systems
    Song, Wen
    SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (02) : 353 - 371
  • [3] Holder Error Bounds and Holder Calmness with Applications to Convex Semi-infinite Optimization
    Kruger, Alexander Y.
    Lopez, Marco A.
    Yang, Xiaoqi
    Zhu, Jiangxing
    SET-VALUED AND VARIATIONAL ANALYSIS, 2019, 27 (04) : 995 - 1023
  • [4] Error Bounds for the Difference of Two Convex Multifunctions
    Huang, Hui
    Li, Runxin
    SET-VALUED AND VARIATIONAL ANALYSIS, 2014, 22 (02) : 447 - 465
  • [5] Error bounds revisited
    Nguyen Duy Cuong
    Kruger, Alexander Y.
    OPTIMIZATION, 2022, 71 (04) : 1021 - 1053
  • [6] Error bounds and metric subregularity
    Kruger, Alexander Y.
    OPTIMIZATION, 2015, 64 (01) : 49 - 79
  • [7] CODERIVATIVE CONDITIONS FOR CALMNESS OF IMPLICIT MULTIFUNCTIONS AND APPLICATIONS
    Yang, Ming-Ge
    Xiao, Yi-Bin
    Huang, Nan-Jing
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (01) : 97 - 113
  • [8] Perturbation Analysis of Error Bounds for Convex Functions on Banach Spaces
    Wei, Zhou
    Thera, Michel
    Yao, Jen-Chih
    JOURNAL OF CONVEX ANALYSIS, 2025, 32 (03) : 883 - 900
  • [9] Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods
    Drusvyatskiy, Dmitriy
    Lewis, Adrian S.
    MATHEMATICS OF OPERATIONS RESEARCH, 2018, 43 (03) : 919 - 948
  • [10] Primal Characterizations of Error Bounds for Composite-Convex Inequalities
    Wei, Zhou
    Thera, Michel
    Yao, Jen-Chih
    JOURNAL OF CONVEX ANALYSIS, 2023, 30 (04) : 1329 - 1350