A study of K-P interaction at high energy using adaptive fuzzy inference system interactions

被引:5
作者
El-Bakry, MY [1 ]
机构
[1] Fac Educ, Salalah 211, Oman
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2004年 / 15卷 / 07期
关键词
particle physics; high energy; adaptive fuzzy systems; neuro fuzzy;
D O I
10.1142/S0129183104006467
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Adaptive Network Fuzzy Inference System (ANFIS) is an artificial intelligence (AI)based technique that proved efficient in a variety of problems such as classification, recognition and modeling of complex systems. This paper utilizes the adaptive network fuzzy inference system to model the K-P interactions. The ANFIS-based K-P model simulates the multiplicity distribution of charged pions at different high energies. The results showed very accurate fitting to the experimental data recommending it to be a good alternative to other theoretical techniques.
引用
收藏
页码:1013 / 1020
页数:8
相关论文
共 26 条
[1]  
ADAMUS M, 1986, Z PHYS C PART FIELDS, V32, P475, DOI 10.1007/BF01550769
[2]   CHARGED-PARTICLE MULTIPLICITY DISTRIBUTIONS FOR 33.8 GEV-C K-P AND 50 GEV-C PI-P INTERACTIONS [J].
AMMOSOV, VV ;
BATON, JP ;
BEILLIERE, P ;
BOSETTI, P ;
BUMAZSHNOV, VA ;
CZEJTHEY.M ;
DALLMAN, DP ;
DAUDIN, A ;
DELER, B ;
DEMIDOV, NG ;
DOMBECK, TW ;
DUINKER, P ;
ERMOLOV, PF ;
FENYUK, AB ;
GORICHEV, PA ;
GRARD, F ;
GRASSLER, H ;
GUMENYUK, SA ;
HERQUET, P ;
KELLNER, G ;
KESTEMAN, J ;
KISTENEV, EP ;
KITTEL, W ;
KUBIK, VM ;
KUHN, D ;
LANIUS, K ;
LAURENT, J ;
MEYER, A ;
MANYUKOV, BA ;
MOISEEV, AM ;
MORRISON, DR ;
MOSCA, L ;
NEVEU, M ;
PEREVOZCHIKOV, VM ;
POSE, R ;
SCHLESINGER, J ;
SULYAEV, RM ;
THORNTON, PR ;
TRIANTIS, F ;
VERBEURE, F ;
VOROBYEV, AP ;
WINDMOLDERS, R .
NUCLEAR PHYSICS B, 1973, B 58 (01) :77-92
[3]  
[Anonymous], 1997, NEURO FUZZY SOFT COM
[4]  
[Anonymous], INDIAN J PHYS A
[5]   K+P INTERACTIONS AT 100 GEV USING A HYBRID BUBBLE-CHAMBER-SPARK-CHAMBER SYSTEM AND A TAGGED BEAM [J].
BARNES, VE ;
CARMONY, DD ;
CHRISTIAN, RS ;
GARFINKEL, AF ;
MORSE, WM ;
MULERA, TA ;
RANGAN, LK ;
DIAMOND, RN ;
ERWIN, AR ;
HARVEY, EH ;
LOVELESS, RJ ;
THOMPSON, MA ;
WINN, DR .
PHYSICAL REVIEW LETTERS, 1975, 34 (07) :415-418
[6]   TOPOLOGICAL, TOTAL, AND ELASTIC CROSS-SECTIONS FOR K+P,PI-+P, AND PP INTERACTIONS AT 147 GEV/C [J].
BRICK, D ;
RUDNICKA, H ;
SHAPIRO, AM ;
WIDGOFF, M ;
ANSORGE, RE ;
NEALE, WW ;
WARD, DR ;
WHYMAN, BM ;
BURNSTEIN, RA ;
RUBIN, HA ;
ALYEA, ED ;
BACHMAN, L ;
CHIEN, CY ;
LUCAS, P ;
PEVSNER, A ;
BOBER, JT ;
DOLFINI, R ;
FRANK, T ;
HAFEN, ES ;
HARIDAS, P ;
HUANG, D ;
HULSIZER, RI ;
KISTIAKOWSKY, V ;
LUTZ, P ;
NOGUCHI, S ;
OH, SH ;
PLESS, IA ;
STOUGHTON, TB ;
SUCHOREBROW, V ;
TETHER, S ;
TREPAGNIER, PC ;
WU, Y ;
YAMAMOTO, RK ;
GRARD, F ;
HANTON, J ;
HENRI, V ;
HERQUET, P ;
LESCEUX, JM ;
PILETTE, P ;
WINDMOLDERS, R ;
DEBOCK, H ;
CRIJNS, F ;
KITTEL, W ;
METZGER, W ;
POLS, C ;
SCHOUTEN, M ;
VANDEWALLE, R ;
COHN, HO ;
BRESSI, G ;
CALLIGARICH, E .
PHYSICAL REVIEW D, 1982, 25 (11) :2794-2806
[7]   Feed forward neural networks modeling for K-P interactions [J].
El-Bakry, MY .
CHAOS SOLITONS & FRACTALS, 2003, 18 (05) :995-1000
[8]   Neural network model for proton-proton collision at high energy [J].
El-Bakry, MY ;
El-Metwally, KA .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :279-285
[9]   A universal neural network representation for hadron-hadron interactions at high energy [J].
El-Metwally, KA ;
Haweel, TI ;
El-Bakry, MY .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (03) :619-628
[10]  
ELBAKRY MY, 1999, 2 C NUCL PART PHYS C