Normalizing constants of log-concave densities

被引:5
作者
Brosse, Nicolas [1 ]
Durmus, Alain [2 ]
Moulines, Eric [1 ]
机构
[1] Ecole Polytech, Ctr Math Appl, UMR 7641, Palaiseau, France
[2] Ecole Normale Super CMLA, 61 Av President Wilson, F-94235 Cachan, France
关键词
Normalizing constants; Bayes factor; annealed importance sampling; Unadjusted Langevin Algorithm; FREE-ENERGY;
D O I
10.1214/18-EJS1411
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive explicit bounds for the computation of normalizing constants Z for log-concave densities pi = e(-U)/Z w.r.t. the Lebesgue measure on R-d . Our approach relies on a Gaussian annealing combined with recent and precise bounds on the Unadjusted Langevin Algorithm [15]. Polynomial bounds in the dimension d are obtained with an exponent that depends on the assumptions made on U. The algorithm also provides a theoretically grounded choice of the annealing sequence of variances. A numerical experiment supports our findings. Results of independent interest on the mean squared error of the empirical average of locally Lipschitz functions are established.
引用
收藏
页码:851 / 889
页数:39
相关论文
共 49 条
[1]  
Andrieu C., 2016, ARXIV E PRINTS
[2]  
[Anonymous], 2008, Optimal Transport: Old and New, DOI DOI 10.1007/978-3-540-71050-9
[3]  
[Anonymous], R LANG ENV STAT COMP
[4]  
[Anonymous], INTRO LECT CONVEX OP
[5]   A comparative study of Monte Carlo methods for efficient evaluation of marginal likelihood [J].
Ardia, David ;
Basturk, Nalan ;
Hoogerheide, Lennart ;
van Dijk, Herman K. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (11) :3398-3414
[6]   Tuning tempered transitions [J].
Behrens, Gundula ;
Friel, Nial ;
Hurn, Merrilee .
STATISTICS AND COMPUTING, 2012, 22 (01) :65-78
[7]  
Beskos A, 2014, ADV APPL PROBAB, V46, P279
[8]  
Boucheron S., 2013, CONCENTRATION INEQUA, DOI DOI 10.1093/ACPROF:OSO/9780199535255.001.0001
[9]  
Chen Ming-Hui., 2000, Monte Carlo Methods in Bayesian Computation, P213, DOI [DOI 10.1007/978-1-4612-1276-8, 10.1007/978-1-4612-1276-87]
[10]  
DEL MORAL P., 2004, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications, DOI 10.1007/978-1-4684-9393-1