A new beamforming method and hardware architecture for real time two way dynamic depth focusing

被引:22
作者
Cruza, Jorge F. [1 ]
Camacho, Jorge [2 ]
Mateos, Raul [3 ]
Fritsch, Carlos [2 ]
机构
[1] DASEL, Avda Canal 44 Nave 3, Madrid 28500, Spain
[2] CSIC, Ultrasound Syst & Technol Grp GSTU, C Serrano 144, Madrid 28006, Spain
[3] UAH, Dept Elect, Edificio Politecn,Campus Univ, Alcala De Henares, Spain
关键词
Total Focus Phased Array; Virtual array; Dynamic Depth Focusing; DDF; Dynamic Depth Full Focusing; DDFF; Beamforming; Refraction; FULL-MATRIX; DELAY CALCULATION; INSPECTION; ARRAYS;
D O I
10.1016/j.ultras.2019.105965
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The Total Focusing Method (TFM) yields a focused image in emission and in reception while Phased Array (PA) imaging provides Dynamic Depth Focusing (DDF) in reception only. Besides, most NDE applications have two propagation media, where refraction at the interface complicates time-of-flight (TOF) and focal law computations. This affects especially TFM, which must compute the TOFs from all elements to image pixels and use them to select the data for imaging. A new method with real-time Dynamic Depth Full Focusing (DDFF), in emission and reception, is proposed in this work. It is called Total Focusing Phased Array (TFPA) because it uses concepts of TFM and PA. Omnidirectional emissions are used to create a synthetic aperture as in TFM, while beamforming is carried out along scan lines as in PA, simplifying the delay calculation in the presence of interfaces and providing an efficient hardware implementation. Refraction at the interface between two media is eliminated by a Virtual Array (VA) that converts such scenario into a simple homogeneous medium. Propagation can be considered along scan lines from the virtual array at constant speed, as in homogeneous media. Strict dynamic focusing is performed in real-time, an important difference with other approaches that require iterative Fermat search to get the focal laws for every imaged point. With TFPA only 3 parameters per element and scan line are required to perform this task. Experiments are carried out to compare the three techniques, PA, TFM and TFPA. TFM and TFPA yield similar image quality, offering improved depth of field and resolution over PA. On the other hand, TFPA avoids most of the burden for computing TOFs and operates in real time with one or two media propagation.
引用
收藏
页数:9
相关论文
共 29 条
[1]  
Bernus L., 2006, SAMPLING PHASED ARRA
[2]   Automatic Dynamic Depth Focusing for NDT [J].
Camacho, Jorge ;
Cruza, Jorge F. ;
Brizuela, Jose ;
Fritsch, Carlos .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2014, 61 (04) :673-684
[3]  
Chiao RY, 1997, 1997 IEEE ULTRASONICS SYMPOSIUM PROCEEDINGS, VOLS 1 & 2, P1679, DOI 10.1109/ULTSYM.1997.663318
[4]  
Corl P. D., 1978, 1978 Ultrasonics Symposium Proceedings, P263, DOI 10.1109/ULTSYM.1978.197042
[5]   Ultrafast hardware-based focal law calculator for automatic focusing [J].
Cruza, Jorge F. ;
Camacho, Jorge ;
Moreno, Jose M. ;
Fritsch, Carlos .
NDT & E INTERNATIONAL, 2015, 74 :1-7
[6]   New Method for Real-Time Dynamic Focusing Through Interfaces [J].
Cruza, Jorge F. ;
Camacho, Jorge ;
Serrano-Iribarnegaray, Luis ;
Fritsch, Carlos .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2013, 60 (04) :739-751
[7]  
Feldkämper HT, 2000, ULTRASON, P1763, DOI 10.1109/ULTSYM.2000.921663
[8]   The progressive focusing correction technique for ultrasound beamforming [J].
Fritsch, Carlos ;
Parrilla, Montserrat ;
Ibanez, Alberto ;
Giacchetta, Roberto C. ;
Martinez, Oscar .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2006, 53 (10) :1820-1831
[9]   Multielement synthetic transmit aperture imaging using temporal encoding [J].
Gammelmark, KL ;
Jensen, JA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (04) :552-563
[10]   Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation [J].
Holmes, C ;
Drinkwater, BW ;
Wilcox, PD .
NDT & E INTERNATIONAL, 2005, 38 (08) :701-711