Modeling functional fatigue of SMA using a more accurate subdivision of martensite volume fractions

被引:27
作者
Zhang, Xiaoyong [1 ,2 ,3 ]
Huang, Dawei [1 ]
Yan, Xiaojun [1 ,2 ,3 ]
Zhou, Xu [4 ]
机构
[1] Beihang Univ, Sch Energy & Power Engn, Beijing 100191, Peoples R China
[2] Collaborat Innovat Ctr Adv Aeroengine, Beijing 100191, Peoples R China
[3] Natl Key Lab Sci & Technol Aeroengine Aerothermod, Beijing 100191, Peoples R China
[4] Space Star Technol CO Ltd, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Shape memory alloy; Constitutive model; Functional fatigue; Transformation induced plastic strain; SHAPE-MEMORY ALLOYS; THERMOMECHANICAL BEHAVIOR; TRANSFORMATION BEHAVIOR; 3-DIMENSIONAL MODEL; CYCLIC BEHAVIOR; NITI; PSEUDOELASTICITY; STRAIN;
D O I
10.1016/j.mechmat.2016.02.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Functional fatigue happens when SMA is subjected to thermal and/or mechanical cyclic loadings. Experiments found functional fatigue of SMA mainly exhibits as the accumulation of the plastic strain, the evolution of the maximum transformation strain and transformation temperatures. In particular, experiments have also indicated that functional fatigue does not occur uniformly in the five phase transformations of SMA (A -> M-d, M-d -> A, A -> M-t, M-t -> A and M-t -> M-d). To account for this issue, this paper introduces a more accurate subdivision of martensite volume fractions as internal variables to control the evolution of every variable in the relevant transformation. Based on the new subdivision, the free energy, thermodynamic forces, transformation functions, and evolution laws are improved. A simple procedure is also introduced in detail to identify the parameters of the model. Finally, numerical simulations using an explicit time-integration procedure are performed. The functional fatigue of a SMA wire under four typical mechanical and/or thermal loading cases are simulated, including (1) axial tension under various temperatures, (2) detwinning followed by subsequent free-recovery and self-accommodation, (3) thermal cycling under constant stress, and (4) mechanical cycling in the superelastic regime. The results indicate that the model can simulate the functional fatigue of SMA correctly. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 29
页数:18
相关论文
共 42 条
[1]   A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity [J].
Auricchio, F. ;
Reali, A. ;
Stefanelli, U. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2007, 23 (02) :207-226
[2]   A review on shape memory alloys with applications to morphing aircraft [J].
Barbarino, S. ;
Flores, E. I. Saavedra ;
Ajaj, R. M. ;
Dayyani, I. ;
Friswell, M. I. .
SMART MATERIALS AND STRUCTURES, 2014, 23 (06)
[3]   Macroscopic modeling of functional fatigue in shape memory alloys [J].
Barrera, Noemi ;
Biscari, Paolo ;
Urbano, Marco Fabrizio .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2014, 45 :101-109
[4]   Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution [J].
Benafan, O. ;
Noebe, R. D. ;
Padula, S. A., II ;
Brown, D. W. ;
Vogel, S. ;
Vaidyanathan, R. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2014, 56 :99-118
[5]   Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect [J].
Bo, ZH ;
Lagoudas, DC .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1999, 37 (09) :1175-1203
[6]  
Brinson LC., 1993, J INTEL MAT SYST STR, V4, P229, DOI DOI 10.1177/1045389X9300400213
[7]  
Christiansen S, 1999, P 8 EUR SPAC MECH TR, P323
[8]   Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires [J].
Delville, R. ;
Malard, B. ;
Pilch, J. ;
Sittner, P. ;
Schryvers, D. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (02) :282-297
[9]   Transformation induced plasticity revised an updated formulation [J].
Fischer, FD ;
Oberaigner, ER ;
Tanaka, K ;
Nishimura, F .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 1998, 35 (18) :2209-2227
[10]   SmartFlexA® NiTi Wires for Shape Memory Actuators [J].
Fumagalli, L. ;
Butera, F. ;
Coda, A. .
JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2009, 18 (5-6) :691-695