Meshless local Petrov-Galerkin method in anisotropic elasticity

被引:0
|
作者
Sladek, J [1 ]
Sladek, V
Atluri, SN
机构
[1] Slovak Acad Sci, Inst Construct & Architecture, Bratislava 84503, Slovakia
[2] Univ Calif Irvine, Ctr Aerosp Educ & Res, Irvine, CA 92612 USA
来源
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES | 2004年 / 6卷 / 05期
关键词
meshless method; local weak form; Heaviside step function; moving least squares interpolation; Laplace transform;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A meshless method based on the local Petrov-Galerkin approach is proposed for solution of static and elastodynamic problems in a homogeneous anisotropic medium. The Heaviside step function is used as the test functions in the local weak form. It is leading to derive local boundary integral equations (LBIEs). For transient elastodynamic problems the Laplace transfor technique is applied and the LBIEs are given in the Laplace transform domain. The analyzed domain is covered by small subdomains with a simple geometry such as circles in 2-d problems. The final form of local integral equations has a pure contour character only in elastostatics. In elastodynamics an additional domain integral is involved due to inertia terms. The moving least square (MLS) method is used for approximation of physical quantities in LBIEs.
引用
收藏
页码:477 / 489
页数:13
相关论文
共 50 条
  • [1] Meshless local Petrov-Galerkin method with complex variables for elasticity
    Yang Xiu-Li
    Dai Bao-Dong
    Li Zhen-Feng
    ACTA PHYSICA SINICA, 2012, 61 (05)
  • [2] A wachspress meshless local Petrov-Galerkin method
    Barry, W
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2004, 28 (05) : 509 - 523
  • [3] Analysis of axisymmetric elasticity problems using the meshless local Petrov-Galerkin method
    Key Laboratory of Road Structure and Material of Ministry of Transport, Changsha University of Science and Technology, Changsha, Hunan 410076, China
    Yang, J.-J. (yangjianjun01@126.com), 1600, Tsinghua University (29):
  • [4] Meshless local Petrov-Galerkin (MLPG) mixed collocation method for elasticity problems
    Atluri, S. N.
    Liu, H. T.
    Han, Z. D.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2006, 14 (03): : 141 - 152
  • [5] Meshless local Petrov-Galerkin method for heat conduction problem in an anisotropic medium
    Sladek, J
    Sladek, V
    Atluri, SN
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2004, 6 (03): : 309 - 318
  • [6] A meshless local Petrov-Galerkin scaled boundary method
    Deeks, AJ
    Augarde, CE
    COMPUTATIONAL MECHANICS, 2005, 36 (03) : 159 - 170
  • [7] Meshless local Petrov-Galerkin method for plane piezoelectricity
    Sladek, J.
    Sladek, V.
    Zhang, Ch.
    Garcia-Sanche, F.
    Wünsche, M.
    Computers, Materials and Continua, 2006, 4 (02): : 109 - 117
  • [8] Error assessment in the meshless local Petrov-Galerkin method
    Pannachet, T
    Barry, W
    Askes, H
    COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 989 - 994
  • [9] On the improvements and applications of the Meshless Local Petrov-Galerkin method
    Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
    不详
    不详
    Tongji Daxue Xuebao, 2006, 5 (603-606):
  • [10] Meshless local Petrov-Galerkin method for the laminated plates
    Xiong, Y. (yuanbox@msn.com), 2005, Beijing University of Aeronautics and Astronautics (BUAA) (22):