Existence of two solutions for double-phase problems with a small perturbation

被引:5
作者
Ge, Bin [1 ]
Cao, Xiao-Feng [1 ]
Yuan, Wen-Shuo [1 ]
机构
[1] Harbin Engn Univ, Coll Math Sci, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Double-phase problems; Musielak– Orlicz space; variational methods; multiple solutions;
D O I
10.1080/00036811.2021.1909725
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of at least two nontrivial solutions for a class of double-phase problems with a small perturbation. We provide one new criterion to ensure the existence of two solutions. Recent results in the literature are extended and significantly improved.
引用
收藏
页数:9
相关论文
共 19 条
[1]   Variational inequalities in Musielak-Orlicz-Sobolev spaces [J].
Benkirane, A. ;
El Vally, M. Sidi .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (05) :787-811
[2]   Parabolic equations with p, q-growth [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (04) :535-563
[3]  
Chang K.C., 1996, Critical Point Theory and Applications
[4]   On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian [J].
Cherfils, L ;
Il'Yasov, Y .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) :9-22
[5]   Eigenvalues for double phase variational integrals [J].
Colasuonno, Francesca ;
Squassina, Marco .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :1917-1959
[6]   Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications [J].
Fan, Xianling ;
Guan, Chun-Xia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) :163-175
[7]   On a class of double-phase problem without Ambrosetti-Rabinowitz-type conditions [J].
Ge, Bin ;
Wang, Li-Yan ;
Lu, Jian-Fang .
APPLICABLE ANALYSIS, 2021, 100 (10) :2147-2162
[8]   Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions [J].
Ge, Bin ;
Lv, De-Jing ;
Lu, Jian-Fang .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 188 :294-315
[9]   Existence of infinitelymany solutions for double phase problem with sign-changing potential [J].
Ge, Bin ;
Chen, Zhi-Yuan .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) :3185-3196
[10]   Generalized Orlicz spaces and related PDE [J].
Harjulehto, Petteri ;
Hasto, Peter ;
Klen, Riku .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 143 :155-173