Uniform deconvolution for Poisson Point Processes

被引:0
|
作者
Bonnet, Anna [1 ,2 ]
Lacour, Claire [3 ]
Picard, Franck [2 ,4 ]
Rivoirard, Vincent [5 ]
机构
[1] Sorbonne Univ, LPSM, UMR CNRS 8001, F-75005 Paris, France
[2] Univ Lyon 1, Univ Lyon, CNRS, LBBE UMR5558, F-69622 Villeurbanne, France
[3] Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, LAMA UMR8050, F-77447 Marne La Vallee, France
[4] Univ Lyon, LBMC, ENS Lyon, UCBL,CNRS UMR 5239,INSERM U1210, 46 Allee Italie,Site Jacques Monod, F-69007 Lyon, France
[5] PSL Univ, Univ Paris Dauphine, CEREMADE, CNRS,UMR 7534, F-75016 Paris, France
关键词
Convolution; Poisson Point Process; Adaptive estimation; G-QUADRUPLEX STRUCTURES; DENSITY-ESTIMATION; INTENSITY; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We focus on the estimation of the intensity of a Poisson process in the presence of a uniform noise. We propose a kernel-based procedure fully calibrated in theory and practice. We show that our adaptive estimator is optimal from the oracle and minimax points of view, and provide new lower bounds when the intensity belongs to a Sobolev ball. By developing the Goldenshluger-Lepski methodology in the case of deconvolution for Poisson processes, we propose an optimal data-driven selection of the kernel bandwidth. Our method is illustrated on the spatial distribution of replication origins and sequence motifs along the human genome.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Uniform deconvolution for Poisson Point Processes
    Bonnet, Anna
    Lacour, Claire
    Picard, Franck
    Rivoirard, Vincent
    Journal of Machine Learning Research, 2022, 23
  • [2] POISSON POINT PROCESSES WITH EXCLUSION
    MURMANN, MG
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 43 (01): : 23 - 37
  • [3] Transforming spatial point processes into Poisson processes
    Schoenberg, F
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 81 (02) : 155 - 164
  • [4] Transforming spatial point processes into Poisson processes
    Stoch. Processes Appl., 2 (155-164):
  • [5] THINNING SPATIAL POINT PROCESSES INTO POISSON PROCESSES
    Moller, Jesper
    Schoenberg, Frederic Paik
    ADVANCES IN APPLIED PROBABILITY, 2010, 42 (02) : 347 - 358
  • [6] Optimal Poisson approximation of uniform empirical processes
    Adell, JA
    delaCal, J
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 64 (01) : 135 - 142
  • [7] Freezing and Decorated Poisson Point Processes
    Subag, Eliran
    Zeitouni, Ofer
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 337 (01) : 55 - 92
  • [8] Robustness for inhomogeneous Poisson point processes
    Assunçao, R
    Guttorp, P
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1999, 51 (04) : 657 - 678
  • [9] FINITARY ISOMORPHISMS OF POISSON POINT PROCESSES
    Soo, Terry
    Wilkens, Amanda
    ANNALS OF PROBABILITY, 2019, 47 (05): : 3055 - 3081
  • [10] On the classification problem for Poisson point processes
    Cholaquidis, Alejandro
    Forzani, Liliana
    Llop, Pamela
    Moreno, Leonardo
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 153 : 1 - 15