Bubbles and W-shaped solitons in Kerr media with fractional diffraction

被引:26
作者
Zeng, Liangwei [1 ,2 ]
Malomed, Boris A. [3 ,4 ,5 ]
Mihalache, Dumitru [6 ]
Cai, Yi [1 ,2 ]
Lu, Xiaowei [1 ,2 ]
Zhu, Qifan [1 ,2 ]
Li, Jingzhen [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov,Shenzhen Key Lab Mic, Shenzhen 518060, Peoples R China
[3] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, POB 39040, Tel Aviv, Israel
[4] Tel Aviv Univ, Ctr Light Matter Interact, POB 39040, Tel Aviv, Israel
[5] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
[6] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania
基金
以色列科学基金会; 中国国家自然科学基金;
关键词
Nonlinear fractional Schrö dinger equation; Dark states; Defect modes; Thomas– Fermi approximation; Variational approximation; VORTEX SOLITONS; SCHRODINGER-EQUATION; MULTIDIMENSIONAL SOLITONS; SYMMETRY-BREAKING; OPTICAL SOLITONS; SPATIAL SOLITONS; GAP SOLITONS; BRIGHT; DYNAMICS; STABILITY;
D O I
10.1007/s11071-021-06459-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We demonstrate that, with the help of a Gaussian potential barrier, dark modes in the form of a local depression ("bubbles") can be supported by the repulsive Kerr nonlinearity in combination with fractional dimension. Similarly, W-shaped modes are supported by a double potential barrier. Families of the modes are constructed in a numerical form, and also by means of the Thomas-Fermi and variational approximations. All these modes are stable, which is predicted by computation of eigenvalues for small perturbations and confirmed by direct numerical simulations.
引用
收藏
页码:4253 / 4264
页数:12
相关论文
共 103 条
[31]   Propagation of solitons in thermal media with periodic nonlinearity [J].
Kartashov, Yaroslav V. ;
Vysloukh, Victor A. ;
Torner, Lluis .
OPTICS LETTERS, 2008, 33 (15) :1774-1776
[32]   Gray spatial solitons in nonlocal nonlinear media [J].
Kartashov, Yaroslav V. ;
Torner, Lluis .
OPTICS LETTERS, 2007, 32 (08) :946-948
[33]   Frontiers in multidimensional self-trapping of nonlinear fields and matter [J].
Kartashov, Yaroslav V. ;
Astrakharchik, Gregory E. ;
Malomed, Boris A. ;
Torner, Lluis .
NATURE REVIEWS PHYSICS, 2019, 1 (03) :185-197
[34]   Rotating vortex clusters in media with inhomogeneous defocusing nonlinearity [J].
Kartashov, Yaroslav V. ;
Malomed, Boris A. ;
Vysloukh, Victor A. ;
Belic, Milivoj R. ;
Torner, Lluis .
OPTICS LETTERS, 2017, 42 (03) :446-449
[35]   Twisted Toroidal Vortex Solitons in Inhomogeneous Media with Repulsive Nonlinearity [J].
Kartashov, Yaroslav V. ;
Malomed, Boris A. ;
Shnir, Yasha ;
Torner, Lluis .
PHYSICAL REVIEW LETTERS, 2014, 113 (26)
[36]   Solitons in nonlinear lattices [J].
Kartashov, Yaroslav V. ;
Malomed, Boris A. ;
Torner, Lluis .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :247-305
[37]   Soliton Shape and Mobility Control in Optical Lattices [J].
Kartashov, Yaroslav V. ;
Vysloukh, Victor A. ;
Torner, Lluis .
PROGRESS IN OPTICS, VOL 52, 2009, 52 :63-+
[38]   Two-dimensional solitons in nonlinear lattices [J].
Kartashov, Yaroslav V. ;
Malomed, Boris A. ;
Vysloukh, Victor A. ;
Torner, Lluis .
OPTICS LETTERS, 2009, 34 (06) :770-772
[39]   Stable soliton complexes in two-dimensional photonic lattices [J].
Kartashov, YV ;
Egorov, AA ;
Torner, L ;
Christodoulides, DN .
OPTICS LETTERS, 2004, 29 (16) :1918-1920
[40]   DIFFERENTIATION OF A NON-INTEGER ORDER AND ITS OPTICAL IMPLEMENTATION [J].
KASPRZAK, H .
APPLIED OPTICS, 1982, 21 (18) :3287-3291