Bubbles and W-shaped solitons in Kerr media with fractional diffraction

被引:26
作者
Zeng, Liangwei [1 ,2 ]
Malomed, Boris A. [3 ,4 ,5 ]
Mihalache, Dumitru [6 ]
Cai, Yi [1 ,2 ]
Lu, Xiaowei [1 ,2 ]
Zhu, Qifan [1 ,2 ]
Li, Jingzhen [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov,Shenzhen Key Lab Mic, Shenzhen 518060, Peoples R China
[3] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, POB 39040, Tel Aviv, Israel
[4] Tel Aviv Univ, Ctr Light Matter Interact, POB 39040, Tel Aviv, Israel
[5] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
[6] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest 077125, Romania
基金
以色列科学基金会; 中国国家自然科学基金;
关键词
Nonlinear fractional Schrö dinger equation; Dark states; Defect modes; Thomas– Fermi approximation; Variational approximation; VORTEX SOLITONS; SCHRODINGER-EQUATION; MULTIDIMENSIONAL SOLITONS; SYMMETRY-BREAKING; OPTICAL SOLITONS; SPATIAL SOLITONS; GAP SOLITONS; BRIGHT; DYNAMICS; STABILITY;
D O I
10.1007/s11071-021-06459-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We demonstrate that, with the help of a Gaussian potential barrier, dark modes in the form of a local depression ("bubbles") can be supported by the repulsive Kerr nonlinearity in combination with fractional dimension. Similarly, W-shaped modes are supported by a double potential barrier. Families of the modes are constructed in a numerical form, and also by means of the Thomas-Fermi and variational approximations. All these modes are stable, which is predicted by computation of eigenvalues for small perturbations and confirmed by direct numerical simulations.
引用
收藏
页码:4253 / 4264
页数:12
相关论文
共 103 条
[1]   Solitons in PT-symmetric nonlinear lattices [J].
Abdullaev, Fatkhulla Kh. ;
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Zezyulin, Dmitry A. .
PHYSICAL REVIEW A, 2011, 83 (04)
[2]  
Abdullaev FK, 2005, INT J MOD PHYS B, V19, P3415
[3]  
Ablowitz M.J., 1981, SOLITONS INVERSE SCA, P1, DOI [DOI 10.1137/1.9781611970883, 10.1137/1.9781611970883]
[4]  
Bagnato VS, 2015, ROM REP PHYS, V67, P5
[5]   Multidimensional solitons in a low-dimensional periodic potential [J].
Baizakov, BB ;
Malomed, BA ;
Salerno, M .
PHYSICAL REVIEW A, 2004, 70 (05) :053613-1
[6]   Multidimensional solitons in periodic potentials [J].
Baizakov, BB ;
Malomed, BA ;
Salerno, M .
EUROPHYSICS LETTERS, 2003, 63 (05) :642-648
[7]   STABILITY AND EVOLUTION OF THE QUIESCENT AND TRAVELING SOLITONIC BUBBLES [J].
BARASHENKOV, IV ;
PANOVA, EY .
PHYSICA D, 1993, 69 (1-2) :114-134
[8]   Inelastic collisions of solitary waves in anisotropic Bose-Einstein condensates: sling-shot events and expanding collision bubbles [J].
Becker, C. ;
Sengstock, K. ;
Schmelcher, P. ;
Kevrekidis, P. G. ;
Carretero-Gonzalez, R. .
NEW JOURNAL OF PHYSICS, 2013, 15
[9]   Bright, dark and W-shaped solitons with extended nonlinear Schrodinger's equation for odd and even higher-order terms [J].
Bendahmane, Issam ;
Triki, Houria ;
Biswas, Anjan ;
Alshomrani, Ali Saleh ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
SUPERLATTICES AND MICROSTRUCTURES, 2018, 114 :53-61
[10]   Bright solitons from defocusing nonlinearities [J].
Borovkova, Olga V. ;
Kartashov, Yaroslav V. ;
Torner, Lluis ;
Malomed, Boris A. .
PHYSICAL REVIEW E, 2011, 84 (03)