An Elderly Fall Detection System Using Depth Images

被引:2
作者
Bundele, Mahesh [1 ]
Sharma, Harish [2 ]
Gupta, Mukesh [3 ]
Sisodia, Pushpendra Singh [4 ]
机构
[1] Poornima Coll Engn, Dept Comp Engn, Jaipur, Rajasthan, India
[2] Rajasthan Tech Univ, Dept Comp Engn, Kota, Rajasthan, India
[3] Swami Keshwanand Inst Technol, Dept Comp Engn, Jaipur, Rajasthan, India
[4] Poornima Coll Engn, Dept Informat Technol, Jaipur, Rajasthan, India
来源
2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (IEEE - ICRAIE-2020) | 2020年
关键词
Elderly Fall Detection; Decision Tree; Computer Vision; Kinect; SOUND;
D O I
10.1109/ICRAIE51050.2020.9358330
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this proposed conceptual technique, we have collected the Microsoft Kinect depth images of elderly fall event. After collecting the necessary depth images the background subtraction algorithm has been used to subtract the background and retain the subject. Segmentation and feature selection process have been applied on various daily activity to train the fall detection model. The model has been train using decision tree. To ensure the fall confidence, ground truthing technique has been used.
引用
收藏
页数:4
相关论文
共 23 条
[1]  
Aguiar B, 2014, IEEE INT SYM MED MEA, P480
[2]   Linguistic summarization of video for fall detection using voxel person and fuzzy logic [J].
Anderson, Derek ;
Luke, Robert H. ;
Keller, James M. ;
Skubic, Marjorie ;
Rantz, Marilyn ;
Aud, Myra .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2009, 113 (01) :80-89
[3]   Simulated Unobtrusive Falls Detection With Multiple Persons [J].
Ariani, Arni ;
Redmond, Stephen J. ;
Chang, David ;
Lovell, Nigel H. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (11) :3185-3196
[4]   Fall Detection With Multiple Cameras: An Occlusion-Resistant Method Based on 3-D Silhouette Vertical Distribution [J].
Auvinet, Edouard ;
Multon, Franck ;
Saint-Arnaud, Alain ;
Rousseau, Jacqueline ;
Meunier, Jean .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2011, 15 (02) :290-300
[5]   TESTING OF A LONG-TERM FALL DETECTION SYSTEM INCORPORATED INTO A CUSTOM VEST FOR THE ELDERLY. [J].
Bourke, Alan K. ;
van de Ven, Pepijn W. J. ;
Chaya, Amy E. ;
OLaighin, Gearoid M. ;
Nelson, John .
2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, :2844-+
[6]  
CDC, FALLS OLD AD OV
[7]   Older adults' attitudes towards and perceptions of 'smart home' technologies: a pilot study [J].
Demiris, G ;
Rantz, MJ ;
Aud, MA ;
Marek, KD ;
Tyrer, HW ;
Skubic, M ;
Hussam, AA .
MEDICAL INFORMATICS AND THE INTERNET IN MEDICINE, 2004, 29 (02) :87-94
[8]  
Demiris George, 2009, Technol Health Care, V17, P41, DOI 10.3233/THC-2009-0530
[9]   Emergency Fall Incidents Detection in Assisted Living Environments Utilizing Motion, Sound, and Visual Perceptual Components [J].
Doukas, Charalampos N. ;
Maglogiannis, Ilias .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2011, 15 (02) :277-289
[10]   A Smart Phone-Based Pocket Fall Accident Detection, Positioning, and Rescue System [J].
Kau, Lih-Jen ;
Chen, Chih-Sheng .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (01) :44-56