Independent mutations in mouse Vangl2 that cause neural tube defects in looptail mice impair interaction with members of the Dishevelled family

被引:141
作者
Torban, E
Wang, HJ
Groulx, N
Gros, P
机构
[1] McGill Univ, Dept Biochem, Ctr Host Resistance, Montreal, PQ H3G 1Y6, Canada
[2] McGill Univ, Ctr Canc, Montreal, PQ H3G 1Y6, Canada
关键词
D O I
10.1074/jbc.M408675200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mammalian Vangl1 and Vangl2 are highly conserved membrane proteins that have evolved from a single ancestral protein Strabismus/Van Gogh found in Drosophila. Mutations in the Vangl2 gene cause a neural tube defect (craniorachischisis) characteristic of the looptail (Lp) mouse. Studies in model organisms indicate that Vangl proteins play a key developmental role in establishing planar cell polarity (PCP) and in regulating convergent extension (CE) movements during embryogenesis. The role of Vangl1 in these processes is virtually unknown, and the molecular function of Vangl1 and Vangl2 in PCP and CE is poorly understood. Using a yeast two-hybrid system, glutathione S-transferase pull-down and co-immunoprecipitation assays, we show that both mouse Vangl1 and Vangl2 physically interact with the three members of the cytoplasmic Dishevelled (Dvl) protein family. This interaction is shown to require both the predicted cytoplasmic C-terminal half of Vangl1/2 and a portion of the Dvl protein containing PDZ and DIX domains. In addition, we show that the two known Vangl2 loss-of-function mutations identified in two independent Lp alleles associated with neural tube defects impair binding to Dvl1, Dvl2, and Dvl3. These findings suggest a molecular mechanism for the neural tube defect seen in Lp mice. Our observations indicate that Vangl1 biochemical properties parallel those of Vangl2 and that Vangl1 might, therefore, participate in PCP and CE either in concert with Vangl2 or independently of Vangl2 in discrete cell types.
引用
收藏
页码:52703 / 52713
页数:11
相关论文
共 51 条
[1]  
Axelrod JD, 2001, GENE DEV, V15, P1182
[2]   Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways [J].
Axelrod, JD ;
Miller, JR ;
Shulman, JM ;
Moon, RT ;
Perrimon, N .
GENES & DEVELOPMENT, 1998, 12 (16) :2610-2622
[3]   Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning [J].
Bastock, R ;
Strutt, H ;
Strutt, D .
DEVELOPMENT, 2003, 130 (13) :3007-3014
[4]   Dishevelled: at the crossroads of divergent intracellular signaling pathways [J].
Boutros, M ;
Mlodzik, M .
MECHANISMS OF DEVELOPMENT, 1999, 83 (1-2) :27-37
[5]   Dishevelled activates JNK and discriminates between JNK pathways in planar polarity and wingless signaling [J].
Boutros, M ;
Paricio, N ;
Strutt, DI ;
Mlodzik, M .
CELL, 1998, 94 (01) :109-118
[6]   Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish [J].
Carreira-Barbosa, F ;
Concha, ML ;
Takeuchi, M ;
Ueno, N ;
Wilson, SW ;
Tada, M .
DEVELOPMENT, 2003, 130 (17) :4037-4046
[7]  
Chae J, 1999, DEVELOPMENT, V126, P5421
[8]   The genetic basis of mammalian neurulation [J].
Copp, AJ ;
Greene, NDE ;
Murdoch, JN .
NATURE REVIEWS GENETICS, 2003, 4 (10) :784-793
[9]   Determination of transmembrane topology of the Escherichia coli natural resistance-associated macrophage protein (Nramp) ortholog [J].
Courville, P ;
Chaloupka, R ;
Veyrier, F ;
Cellier, MFM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (05) :3318-3326
[10]   Mutation of Celsr1 disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse [J].
Curtin, JA ;
Quint, E ;
Tsipouri, V ;
Arkell, RM ;
Cattanach, B ;
Copp, AJ ;
Henderson, DJ ;
Spurr, N ;
Stanier, P ;
Fisher, EM ;
Nolan, PM ;
Steel, KP ;
Brown, SDM ;
Gray, IC ;
Murdoch, JN .
CURRENT BIOLOGY, 2003, 13 (13) :1129-1133