BEAM-FORMING ERRORS IN MURCHISON WIDEFIELD ARRAY PHASED ARRAY ANTENNAS AND THEIR EFFECTS ON EPOCH OF REIONIZATION SCIENCE

被引:13
|
作者
Neben, Abraham R. [1 ]
Hewitt, Jacqueline N. [1 ]
Bradley, Richard F. [2 ,3 ]
Dillon, Joshua S. [1 ,4 ,5 ]
Bernardi, G. [6 ,7 ]
Bowman, J. D. [8 ]
Briggs, F. [9 ]
Cappallo, R. J. [10 ]
Corey, B. E. [10 ]
Deshpande, A. A. [11 ]
Goeke, R. [1 ]
Greenhill, L. J. [12 ]
Hazelton, B. J. [13 ]
Johnston-Hollitt, M. [14 ]
Kaplan, D. L. [15 ]
Lonsdale, C. J. [10 ]
McWhirter, S. R. [10 ]
Mitchell, D. A. [16 ,20 ]
Morales, M. F. [13 ]
Morgan, E. [1 ]
Oberoi, D. [17 ]
Ord, S. M. [18 ,20 ]
Prabu, T. [11 ]
Shankar, N. Udaya [11 ]
Srivani, K. S. [11 ]
Subrahmanyan, R. [11 ]
Tingay, S. J. [18 ]
Wayth, R. B. [18 ,20 ]
Webster, R. L. [19 ,20 ]
Williams, A. [18 ,20 ]
Williams, C. L. [1 ]
机构
[1] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
[3] Natl Radio Astron Obs, Charlottesville, VA USA
[4] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA
[5] Berkeley Ctr Cosmol Phys, Berkeley, CA USA
[6] SKA SA, ZA-7405 Cape Town, South Africa
[7] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa
[8] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA
[9] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
[10] MIT, Haystack Observ, Westford, MA 01886 USA
[11] Raman Res Inst, Bangalore 560080, Karnataka, India
[12] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[13] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[14] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington 6140, New Zealand
[15] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA
[16] CSIRO Astron & Space Sci CASS, POB 76, Epping, NSW 1710, Australia
[17] Tata Inst Fundamental Res, Natl Ctr Radio Astrophys, Pune 411007, Maharashtra, India
[18] Curtin Univ, Int Ctr Radio Astron Res, Bentley, WA 6102, Australia
[19] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[20] ARC Ctr Excellence All Sky Astrophys CAASTRO, Sydney, NSW, Australia
来源
ASTROPHYSICAL JOURNAL | 2016年 / 820卷 / 01期
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
cosmology: observations; dark ages; reionization; first stars; instrumentation: interferometers; methods: statistical; techniques: interferometric; 21 CM EPOCH; POWER SPECTRUM; PRECISION; CALIBRATION; COSMOLOGY; SENSITIVITY; LIMITATIONS; FOREGROUNDS; SIMULATION; EMISSION;
D O I
10.3847/0004-637X/820/1/44
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of +/- 10%-20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image-and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the "wedge"). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the "EOR window"), showing that foreground avoidance remains a viable strategy.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Assessment of Ionospheric Activity Tolerances for Epoch of Reionization Science with the Murchison Widefield Array
    Trott, Cathryn M.
    Jordan, C. H.
    Murray, S. G.
    Pindor, B.
    Mitchell, D. A.
    Wayth, R. B.
    Line, J.
    McKinley, B.
    Beardsley, A.
    Bowman, J.
    Briggs, F.
    Hazelton, B. J.
    Hewitt, J.
    Jacobs, D.
    Morales, M. F.
    Pober, J. C.
    Sethi, S.
    Shankar, U.
    Subrahmanyan, R.
    Tegmark, M.
    Tingay, S. J.
    Webster, R. L.
    Wyithe, J. S. B.
    ASTROPHYSICAL JOURNAL, 2018, 867 (01):
  • [2] Science with the Murchison Widefield Array
    Bowman, Judd D.
    Cairns, Iver
    Kaplan, David L.
    Murphy, Tara
    Oberoi, Divya
    Staveley-Smith, Lister
    Arcus, Wayne
    Barnes, David G.
    Bernardi, Gianni
    Briggs, Frank H.
    Brown, Shea
    Bunton, John D.
    Burgasser, Adam J.
    Cappallo, Roger J.
    Chatterjee, Shami
    Corey, Brian E.
    Coster, Anthea
    Deshpande, Avinash
    deSouza, Ludi
    Emrich, David
    Erickson, Philip
    Goeke, Robert F.
    Gaensler, B. M.
    Greenhill, Lincoln J.
    Harvey-Smith, Lisa
    Hazelton, Bryna J.
    Herne, David
    Hewitt, Jacqueline N.
    Johnston-Hollitt, Melanie
    Kasper, Justin C.
    Kincaid, Barton B.
    Koenig, Ronald
    Kratzenberg, Eric
    Lonsdale, Colin J.
    Lynch, Mervyn J.
    Matthews, Lynn D.
    McWhirter, S. Russell
    Mitchell, Daniel A.
    Morales, Miguel F.
    Morgan, Edward H.
    Ord, Stephen M.
    Pathikulangara, Joseph
    Prabu, Thiagaraj
    Remillard, Ronald A.
    Robishaw, Timothy
    Rogers, Alan E. E.
    Roshi, Anish A.
    Salah, Joseph E.
    Sault, Robert J.
    Shankar, N. Udaya
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2013, 30
  • [3] Phased Array Antennas and Antenna Interference Control for Hybrid Adaptive Beam-Forming
    Yoon, Hong-Jib
    TaeckKeun, Oh
    Lee, Yongshik
    Min, Byung-Wook
    2015 INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY (IWAT), 2015, : 316 - 318
  • [4] Advanced design of phased array beam-forming networks
    Speciale, R. A.
    PIERS 2006 Cambridge: Progress in Electromagnetics Research Symposium, Proceedings, 2006, : 279 - 282
  • [5] Improving the Epoch of Reionization Power Spectrum Results from Murchison Widefield Array Season 1 Observations
    Barry, N.
    Wilensky, M.
    Trott, C. M.
    Pindor, B.
    Beardsley, A. P.
    Hazelton, B. J.
    Sullivan, I. S.
    Morales, M. F.
    Pober, J. C.
    Line, J.
    Greig, B.
    Byrne, R.
    Lanman, A.
    Li, W.
    Jordan, C. H.
    Joseph, R. C.
    McKinley, B.
    Rahimi, M.
    Yoshiura, S.
    Bowman, J. D.
    Gaensler, B. M.
    Hewitt, J. N.
    Jacobs, D. C.
    Mitchell, D. A.
    Shankar, N. Udaya
    Sethi, S. K.
    Subrahmanyan, R.
    Tingay, S. J.
    Webster, R. L.
    Wyithe, J. S. B.
    ASTROPHYSICAL JOURNAL, 2019, 884 (01):
  • [6] Photorefractive phased-array antenna beam-forming processor
    Sarto, W
    Wagner, K
    Weverka, RT
    Blair, S
    Weaver, S
    RADAR PROCESSING, TECHNOLOGY, AND APPLICATIONS, 1996, 2845 : 307 - 318
  • [7] Advanced design of phased-array beam-forming networks
    Speciale, RA
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 1996, 38 (04) : 22 - 34
  • [8] Noise Temperature of Phased Array Radio Telescope: The Murchison Widefield Array and the Engineering Development Array
    Ung, Daniel C. X.
    Sokolowski, Marcin
    Sutinjo, Adrian T.
    Davidson, David B.
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (07) : 5395 - 5404
  • [9] Optical BEAMTAP beam-forming and jammer-nulling system for broadband phased-array antennas
    Kriehn, G
    Kiruluta, A
    Silveira, PEX
    Weaver, S
    Kraut, S
    Wagner, K
    Weverka, RT
    Griffiths, L
    APPLIED OPTICS, 2000, 39 (02) : 212 - 230
  • [10] A beam-forming network for a circular switched-beam phased array antenna
    Karmakar, NC
    Bialkowski, ME
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2001, 11 (01) : 7 - 9