Dynamic estimation with random forests for discrete-time survival data

被引:8
作者
Moradian, Hoora [1 ]
Yao, Weichi [2 ]
Larocque, Denis [1 ]
Simonoff, Jeffrey S. [2 ]
Frydman, Halina [2 ]
机构
[1] HEC Montreal, Dept Decis Sci, Montreal, PQ, Canada
[2] NYU, Stern Sch Business, Dept Technol Operat & Stat, New York, NY USA
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2022年 / 50卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
Discrete-time survival analysis; landmark analysis; random forests; survival forests; time-varying covariates; TREES; PREDICTION; REGRESSION; RECOVERY;
D O I
10.1002/cjs.11639
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Time-varying covariates are often available in survival studies, and estimation of the hazard function needs to be updated as new information becomes available. In this article, we investigate several different easy-to-implement ways that random forests can be used for dynamic estimation of the survival or hazard function from discrete-time survival data. Results from a simulation study indicate that all methods can perform well, and that none dominates the others. In general, situations that are more difficult from an estimation point of view (such as weaker signals and less data) favour a global fit, pooling over all time points, while situations that are easier from an estimation point of view (such as stronger signals and more data) favour local fits.
引用
收藏
页码:533 / 548
页数:16
相关论文
共 42 条
[1]   ANALYSIS OF SURVIVAL BY TUMOR RESPONSE [J].
ANDERSON, JR ;
CAIN, KC ;
GELBER, RD .
JOURNAL OF CLINICAL ONCOLOGY, 1983, 1 (11) :710-719
[2]  
[Anonymous], 2020, R. R A Lang. Environ. Stat. Comput. R Found. Stat. Comput
[3]  
[Anonymous], 2005, Survival Analysis a Self-Learning Text, DOI DOI 10.1007/978-1-4419-6646-9
[4]  
Bacchetti P, 1995, Lifetime Data Anal, V1, P35, DOI 10.1007/BF00985256
[5]   A classification tree approach for the modeling of competing risks in discrete time [J].
Berger, Moritz ;
Welchowski, Thomas ;
Schmitz-Valckenberg, Steffen ;
Schmid, Matthias .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (04) :965-990
[6]   Tree-based identification of subgroups for time-varying covariate survival data [J].
Bertolet, Marnie ;
Brooks, Maria M. ;
Bittner, Vera .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2016, 25 (01) :488-501
[7]   A review of survival trees [J].
Bou-Hamad, Imad ;
Larocque, Denis ;
Ben-Ameur, Hatem .
STATISTICS SURVEYS, 2011, 5 :44-71
[8]   Discrete-time survival trees and forests with time-varying covariates: application to bankruptcy data [J].
Bou-Hamad, Imad ;
Larocque, Denis ;
Ben-Ameur, Hatem .
STATISTICAL MODELLING, 2011, 11 (05) :429-446
[9]   Discrete-time survival trees [J].
Bou-Hamad, Imad ;
Larocque, Denis ;
Ben-Ameur, Hatem ;
Masse, Louise C. ;
Vitaro, Frank ;
Tremblay, Richard E. .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (01) :17-32
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32