Dual multi-kernel discriminant analysis for color face recognition

被引:4
作者
Liu, Qian [1 ,2 ]
Wang, Chao [1 ,2 ]
Jing, Xiao-yuan [3 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Meteorol Observat & Informat Proc, Nanjing 210044, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Jiangsu, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210023, Jiangsu, Peoples R China
来源
OPTIK | 2017年 / 139卷
基金
中国国家自然科学基金;
关键词
Color face recognition; Multi-kernel learning; Discriminant analysis; Nonlinear feature extraction; Subspace learning; Face recognition grand challenge (FRGC); Labeled faces in the wilds (LFW); FACIAL EXPRESSION RECOGNITION; FEATURES; PCA;
D O I
10.1016/j.ijleo.2017.03.105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
With the increasing use of color images in the fields of pattern recognition, computer vision and machine learning, color face recognition technique becomes important, whose key problem is how to make full use of the color information and extract effective discriminating features. In this paper, we propose a novel nonlinear feature extraction approach for color face recognition, named dual multi-kernel discriminant analysis (DMDA), where we design a kernel selection strategy to select the optimal kernel mapping function for each color component of face images, further design a color space selection strategy to choose the most suitable space, then separately map different color components of face images into different high-dimensional kernel spaces, and finally perform multi-kernel learning and discriminant analysis not only within each component but also between different components. Experimental results in the public face recognition grand challenge (FRGC) version 2 and labeled faces in the wilds (LFW) databases illustrate that our approach outperforms several representative color face recognition methods. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 44 条
[1]  
[Anonymous], 2012, ADV NEURAL INFORM PR
[2]  
[Anonymous], 2014, CLADISTICS
[3]   Generalized discriminant analysis using a kernel approach [J].
Baudat, G ;
Anouar, FE .
NEURAL COMPUTATION, 2000, 12 (10) :2385-2404
[4]   Generalized quadratic discriminant analysis [J].
Bose, Smarajit ;
Pal, Amita ;
SahaRay, Rita ;
Nayak, Jitadeepa .
PATTERN RECOGNITION, 2015, 48 (08) :2676-2684
[5]   Wood cell recognition using geodesic active contour and principal component analysis [J].
Chen Guang-Sheng ;
Zhao Peng .
OPTIK, 2013, 124 (10) :949-952
[6]   Color Local Texture Features for Color Face Recognition [J].
Choi, Jae Young ;
Ro, Yong Man ;
Plataniotis, Konstantinos N. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (03) :1366-1380
[7]   Boosting Color Feature Selection for Color Face Recognition [J].
Choi, Jae Young ;
Ro, Yong Man ;
Plataniotis, Konstantinos N. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (05) :1425-1434
[8]   A comparative study of preprocessing mismatch effects in color image based face recognition [J].
Choi, Jae Young ;
Ro, Yong Man ;
Plataniotis, Konstantinos N. .
PATTERN RECOGNITION, 2011, 44 (02) :412-430
[9]   On incremental semi-supervised discriminant analysis [J].
Dhamecha, Tejas Indulal ;
Singh, Richa ;
Vatsa, Mayank .
PATTERN RECOGNITION, 2016, 52 :135-147
[10]   Correlation based efficient face recognition and color change detection [J].
Elbouz, M. ;
Alfalou, A. ;
Brosseau, C. ;
Alam, M. S. ;
Qasmi, S. .
OPTICS COMMUNICATIONS, 2014, 311 :186-200