Four-dimensional generalized difference matrix and some double sequence spaces

被引:11
作者
Tug, Orhan [1 ]
机构
[1] Ishik Univ, Dept Math Educ, Ishik Campus,100 Meter St, Erbil, Iraq
关键词
four-dimensional generalized difference matrix; matrix domain; double sequence spaces; alpha-dual; beta-dual; gamma-dual; matrix transformations;
D O I
10.1186/s13660-017-1423-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, I introduce some new double sequence spaces B(M-u), B(C-p), B(C-bp), B(C-r) and B(L-q) as the domain of four-dimensional generalized difference matrix B(r, s, t, u) in the spaces M-u, C-p, C-bp, C-r and L-q, respectively. I show that the double sequence spaces B(M-u), B(C-bp) and B(C-r) are the Banach spaces under some certain conditions. I give some inclusion relations with some topological properties. Moreover, I determine the alpha-dual of the spaces B(M-u) and B(C-bp), the beta(V)-duals of the spaces B(M-u), B(C-p), B(C-bp), B(C-r) and B(L-q), where V is an element of{p, bp, r}, and the gamma-dual of the spaces B(M-u), B(C-bp) and B(L-q). Finally, I characterize the classes of four-dimensional matrix mappings defined on the spaces B(M-u), B(C-p), B(C-bp), B(C-r) and B(L-q) of double sequences.
引用
收藏
页数:22
相关论文
共 23 条
[1]   On non factorable transformations of double sequences [J].
Adams, CR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1933, 19 :564-567
[2]   Some new spaces of double sequences [J].
Altay, B ;
Basar, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 309 (01) :70-90
[3]  
Basar F., 2012, SUMMABILITY THEORY I, P2022, DOI [10.2174/97816080545231120101, DOI 10.2174/97816080545231120101]
[4]  
Basar F., 2009, Math. J. Okayama Univ., V51, P149
[5]  
Boos J., 2000, CLASSICAL MODERN MET
[6]   The σ-convergence and σ-core of double sequences [J].
Cakan, Celal ;
Altay, Bilal ;
Mursaleen, M. .
APPLIED MATHEMATICS LETTERS, 2006, 19 (10) :1122-1128
[7]  
Cooke R. G., 1950, INFINITE MATRICES SE
[8]  
Hamilton H. J., 1936, Duke Math. J., V2, P29, DOI DOI 10.1215/S0012-7094-36-00204-1
[9]  
Hardy GH, 1919, P CAMB PHILOS SOC, V19, P86
[10]  
MORICZ F, 1991, ACTA MATH HUNG, V57, P129