STRONG COMMUTATIVITY PRESERVING GENERALIZED DERIVATIONS ON TRIANGULAR RINGS

被引:6
作者
Yuan, He [1 ]
Wang, Yao [2 ]
Wang, Yu [3 ]
Du, Yiqiu [4 ]
机构
[1] Jilin Univ, Inst Math, Changchun 130012, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[3] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[4] Jilin Normal Univ, Coll Math, Siping 136000, Peoples R China
来源
OPERATORS AND MATRICES | 2014年 / 8卷 / 03期
关键词
Triangular ring; upper triangular matrix ring; nest algebra; strong commutativity preserving maps; generalized derivations; COMMUTING MAPS;
D O I
10.7153/oam-08-43
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U = Tri(A, M, B) be a triangular ring such that either A or B has no nonzero central ideals. It is shown that every pair of strong commutativity preserving generalized derivations g(1), g(2) of U (i.e., [g(1)(x), g(2)(y)] = [x, y] for all x, y is an element of U) is of the form g(1)(x) = lambda(-1) x + [x, u] and g(2)(x) = lambda(2)g(1)(x), where lambda is an element of Z(U), the center of U, and u is an element of U with u[U, U] = 0 = [U, U]u. As consequences, every pair of strong commutativity preserving generalized derivations on upper triangular matrix rings and nest algebras is determined.
引用
收藏
页码:773 / 783
页数:11
相关论文
共 23 条
[1]   Generalized derivations with engel conditions on one-sided ideals [J].
Albas, Einine ;
Argac, Nurcan ;
De Filippis, Vincenzo .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (06) :2063-2071
[2]   ON COMMUTATIVITY AND STRONG COMMUTATIVITY-PRESERVING MAPS [J].
BELL, HE ;
DAIF, MN .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04) :443-447
[3]   Commuting traces and commutativity preserving maps on triangular algebras [J].
Benkovic, D ;
Eremita, D .
JOURNAL OF ALGEBRA, 2004, 280 (02) :797-824
[4]   On generalized derivations in Banach algebras [J].
Boudi, Nadia ;
Ouchrif, Said .
STUDIA MATHEMATICA, 2009, 194 (01) :81-89
[5]   STRONG COMMUTATIVITY PRESERVING-MAPS OF SEMIPRIME RINGS [J].
BRESAR, M ;
MIERS, CR .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04) :457-460
[6]   ON THE DISTANCE OF THE COMPOSITION OF 2 DERIVATIONS TO THE GENERALIZED DERIVATIONS [J].
BRESAR, M .
GLASGOW MATHEMATICAL JOURNAL, 1991, 33 :89-93
[7]  
Cheung W.S., 2000, Ph.D. Thesis
[8]   Commuting maps of triangular algebras [J].
Cheung, WS .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 :117-127
[9]  
Davidson K.R., 1988, NEST ALGEBRAS
[10]   An Engel condition with generalized derivations on multilinear polynomials [J].
De Filippis, Vincenzo .
ISRAEL JOURNAL OF MATHEMATICS, 2007, 162 (01) :93-108