Optimization of deformation properties in as-cast copper by microstructural engineering. Part I. microstructure

被引:22
作者
Chen, Kaixuan [1 ,2 ]
Chen, Xiaohua [3 ]
Wang, Zidong [1 ]
Mao, Huahai [2 ,4 ]
Sandstrom, Rolf [2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] KTH Royal Inst Technol, Dept Mat Sci & Engn, SE-10044 Stockholm, Sweden
[3] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[4] Thermocalc Software AB, Rasundavagen 18A, SE-16967 Solna, Sweden
基金
高等学校博士学科点专项科研基金;
关键词
Casting; Copper; Microstructure design; Grain refinement; Iron-rich nanoparticle; MECHANICAL-PROPERTIES; STRENGTH; ALLOY; STEEL; SOLIDIFICATION; NANOPARTICLES; NUCLEATION; EVOLUTION; DUCTILITY; ALUMINUM;
D O I
10.1016/j.jallcom.2018.05.297
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The microstructural features required to optimize both the strength and ductility of copper are investigated by examining the as-cast pure Cu and Cu-(1.0e3.0)Fe-0.5Co and Cu-1.5Fe-0.1Sn (wt %) alloys. Uniaxial tensile tests show that (Fe, Co)- or (Fe, Sn)-doping improves both the strength and ductility of pure copper. The microstructure evolution with Fe, Co, or Sn doping is characterized by using optical and scanning and transmission electron microscopies. The effects of Fe, Co, and Sn doping on the microstructure clearly show that (i) iron-rich nanoparticles are dispersed inside the grains. The spherical nanoparticles grow in size with increasing Fe content, and when the Fe content exceeds 2.0 wt %, the particles transition into a petal-like morphology. (ii) The microstructure of the alloys (grain size and morphology) is notably influenced by the Fe and Co contents, and the grain size is reduced from an average of 603 mu m in pure Cu to an average of 26 mm in the Cu-3.0Fe-0.5Co alloy. (iii) The addition of 1.5wt % Fe and 0.1wt % Sn dramatically reduces the grain size to an average of 42 mu m, and this reduction is correlated with the appearance of smaller spherical iron-rich nanoparticles. The evolution mechanisms of the iron-rich nanoparticles and grain structure under the alloying effect are discussed. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:592 / 605
页数:14
相关论文
共 22 条
[21]   New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties [J].
Dziadek, Michal ;
Menaszek, Elzbieta ;
Zagrajczuk, Barbara ;
Pawlik, Justyna ;
Cholewa-Kowalska, Katarzyna .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 56 :9-21
[22]   Rheological Properties of the EP742-ID Alloy in the Context of Integrated Computational Materials Science and Engineering: Part I. Results of Experimental Investigations [J].
Nosov, V. K. ;
Kononov, S. A. ;
Perevozov, A. S. ;
Nesterov, P. A. ;
Shchugorev, Yu. Yu. ;
Gladkov, Yu. A. .
RUSSIAN JOURNAL OF NON-FERROUS METALS, 2018, 59 (02) :163-172