Spectral analysis of a differential operator with an involution

被引:28
作者
Baskakov, Anatoly G. [1 ]
Krishtal, Ilya A. [2 ]
Romanova, Elena Yu. [1 ]
机构
[1] Voronezh State Univ, Dept Appl Math & Mech, Voronezh 394693, Russia
[2] Northern Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA
基金
美国国家科学基金会;
关键词
Spectral asymptotic analysis; Method of similar operators; PERTURBATION;
D O I
10.1007/s00028-016-0332-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use the method of similar operators to perform the asymptotic analysis of the spectrum of a differential operator with an involution. We show that such operators have compact resolvent, and that their large eigenvalues are determined by the values of (the Fourier coefficients) of their potential up to a summable sequence.
引用
收藏
页码:669 / 684
页数:16
相关论文
共 49 条
[41]   Soliton solutions and stability analysis for some conformable nonlinear partial differential equations in mathematical physics [J].
Inc, Mustafa ;
Yusuf, Abdullahi ;
Aliyu, Aliyu Isa ;
Baleanu, Dumitru .
OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (04)
[42]   On invariant analysis of some time fractional nonlinear systems of partial differential equations. I [J].
Singla, Komal ;
Gupta, R. K. .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (10)
[43]   Conformable variational iteration method, conformable fractional reduced differential transform method and conformable homotopy analysis method for non-linear fractional partial differential equations [J].
Acan, Omer ;
Firat, Omer ;
Keskin, Yildiray .
WAVES IN RANDOM AND COMPLEX MEDIA, 2020, 30 (02) :250-268
[44]   Spectral analysis of centre of pressure identifies altered balance control in individuals with moderate-severe traumatic brain injury [J].
Perez, Olinda Habib ;
Green, Robin E. ;
Mochizuki, George .
DISABILITY AND REHABILITATION, 2020, 42 (04) :519-527
[45]   STOCHASTIC-ANALYSIS OF 2-PHASE FLOW IN POROUS-MEDIA .1. SPECTRAL PERTURBATION APPROACH [J].
CHANG, CM ;
KEMBLOWSKI, MW ;
KALUARACHCHI, JJ ;
ABDIN, A .
TRANSPORT IN POROUS MEDIA, 1995, 19 (03) :233-259
[46]   The method of similar operators in the spectral analysis of non-self-adjoint Dirac operators with non-smooth potentials [J].
Baskakov, A. G. ;
Derbushev, A. V. ;
Shcherbakov, A. O. .
IZVESTIYA MATHEMATICS, 2011, 75 (03) :445-469
[47]   COMPARED COMPUTATIONAL PERFORMANCES OF GALERKIN APPROXIMATIONS FOR PERTURBED VARIABLE-COEFFICIENT DIFFERENTIAL EQUATIONS, ONE-DIMENSIONAL ANALYSIS [J].
Garijo, Diego ;
Gomez-Escalonilla, Francisco J. ;
Valencia, Oscar F. .
11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, :2688-2699
[48]   Spectral analysis of Monte Carlo calculated fluence correction and cema conversion factors for high- energy photon beams at different depths [J].
Roers, Julian ;
Czarnecki, Damian ;
Alissa, Mohamad ;
Zink, Klemens .
FRONTIERS IN PHYSICS, 2023, 10
[49]   Spectral Properties of Some Linear Matrix Differential Operators in Lp-spaces on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} [J].
E. Albrecht ;
W. J. Ricker .
Integral Equations and Operator Theory, 2007, 59 (4) :449-489