GAUSS MAPS OF TRANSLATING SOLITONS OF MEAN CURVATURE FLOW

被引:22
作者
Bao, Chao [1 ]
Shi, Yuguang [1 ]
机构
[1] Peking Univ, Key Lab Pure & Appl Math, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Translating soliton; Gauss map; HARMONIC MAPS; THEOREM;
D O I
10.1090/S0002-9939-2014-12209-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short note we study the Bernstein type theorem of translating solitons whose images of their Gauss maps are contained in compact subsets in an open hemisphere of the standard S-n. As a special case we get a classical Bernstein type theorem in minimal submanifolds in Rn+1.
引用
收藏
页码:4333 / 4339
页数:7
相关论文
共 11 条
[1]   ON THE LIOUVILLE THEOREM FOR HARMONIC MAPS [J].
CHOI, HI .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (01) :91-94
[2]  
Greene R. E., 1979, LECT NOTES MATH, V699
[3]  
HAMILTON RS, 1995, J DIFFER GEOM, V41, P215
[4]   Convexity estimates for mean curvature flow and singularities of mean convex surfaces [J].
Huisken, G ;
Sinestrari, C .
ACTA MATHEMATICA, 1999, 183 (01) :45-70
[5]  
Jost J, 2012, J DIFFER GEOM, V90, P131
[6]  
Li JY, 2009, J EUR MATH SOC, V11, P207
[7]  
Li P., LECT NOTES HARMONIC
[9]  
Wang MT, 2003, MATH RES LETT, V10, P287
[10]  
Xin Y. L., RIGIDITY THEOREM SEL