New perspectives for the biclustering problem

被引:9
作者
de Franca, Fabricio O. [1 ]
Bezerra, George [1 ]
Von Zuben, Fernando J. [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn FEEC, LBiC, CP 6101, BR-13083970 Campinas, SP, Brazil
来源
2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6 | 2006年
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1109/CEC.2006.1688387
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal optimization algorithms inspired by the immune system are generally characterized by a dynamic control of the population size and by diversity maintenance along the search. One of these proposals, denoted copt-aiNet (artificial immune network for combinatorial optimization), is used to deal with combinatorial problems like the Traveling Salesman Problem (TSP) and other permutation problems. In this paper, the copt-aiNet algorithm is extended and adapted to be applied to an important issue of modern data mining, the biclustering problem. The biclustering approach consists in simultaneously ordering the rows and columns of a given matrix, so that similar elements are grouped together. To illustrate the performance of the proposed method, two bitmap images are scrambled and used as input to the algorithm, and the biclustering procedure tries to restore the original image by grouping the pixels according to the similarity of colors in a neighborhood. Additionally, copt-aiNet is applied to gene expression data clustering, a classical problem of the bioinformatics literature, and its performance is compared with a hierarchical biclustering algorithm.
引用
收藏
页码:753 / +
页数:2
相关论文
共 32 条
[1]  
[Anonymous], 2002, HDB METAHEURISTICS
[2]  
CHENG Y, 2000, P 8 INT C INT SYST M, P93
[3]  
De Castro L. N., 2001, International Journal of Computational Intelligence and Applications, V1, P239, DOI 10.1142/S1469026801000238
[4]  
de Castro LeandroN., 2002, ARTIFICIAL IMMUNE SY
[5]  
de Castro LN, 2002, DATA MINING: A HEURISTIC APPROACH, P231
[6]  
de Castro LN, 2002, IEEE C EVOL COMPUTAT, P699, DOI 10.1109/CEC.2002.1007011
[7]   Learning and optimization using the clonal selection principle [J].
de Castro, LN ;
Von Zuben, FJ .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (03) :239-251
[8]  
de França FO, 2005, GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, P289
[9]   An Immune-Evolutionary Algorithm for Multiple Rearrangements of Gene Expression Data [J].
Janaína S. de Sousa ;
Lalinka de C. T. Gomes ;
George B. Bezerra ;
Leandro N. de Castro ;
Fernando J. Von Zuben .
Genetic Programming and Evolvable Machines, 2004, 5 (2) :157-179
[10]  
DEFRANCA FO, THESIS STATE U CAMPI