ON THE CONTROLLABILITY OF A COUPLED SYSTEM OF TWO KORTEWEG-DE VRIES EQUATIONS

被引:20
|
作者
Micu, Sorin [1 ]
Ortega, Jaime H. [2 ,3 ]
Pazoto, Ademir F. [4 ]
机构
[1] Univ Craiova, Fac Matemat Informat, Craiova 200585, Romania
[2] Univ Chile, Dept Ingn Matemat, UMI 2807, CNRS, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento, UMI 2807, CNRS, Santiago, Chile
[4] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
关键词
Korteweg-de Vries equation and system; boundary control; observation; local controllability; EXACT BOUNDARY CONTROLLABILITY; STABILIZABILITY; STABILIZATION;
D O I
10.1142/S0219199709003600
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves the local exact boundary controllability property of a nonlinear system of two coupled Korteweg-de Vries equations which models the interactions of weakly nonlinear gravity waves (see [10]). Following the method in [24], which combines the analysis of the linearized system and the Banach's fixed point theorem, the controllability problem is reduced to prove a nonstandard unique continuation property of the eigenfunctions of the corresponding differential operator.
引用
收藏
页码:799 / 827
页数:29
相关论文
共 50 条
  • [41] Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain
    Laurent, Camille
    Rosier, Lionel
    Zhang, Bing-Yu
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (04) : 707 - 744
  • [42] Decay of Solutions to Damped Korteweg-de Vries Type Equation
    Cavalcanti, Marcelo M.
    Domingos Cavalcanti, Valeria N.
    Faminskii, Andrei
    Natali, Fabio
    APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (02): : 221 - 251
  • [43] RAPID EXPONENTIAL STABILIZATION FOR A LINEAR KORTEWEG-DE VRIES EQUATION
    Cerpa, Eduardo
    Crepeau, Emmanuelle
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (03): : 655 - 668
  • [44] Control and stabilization of the Korteweg-de Vries equation: recent progresses
    Rosier, Lionel
    Zhang, Bing-Yu
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2009, 22 (04) : 647 - 682
  • [45] On the uniform decay for the Korteweg-de Vries equation with weak damping
    Massarolo, C. P.
    Menzala, G. P.
    Pazoto, A. F.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (12) : 1419 - 1435
  • [46] Exponential Stability for Linearized Korteweg-de Vries-ODE system
    Lu, Lu
    Zhao, Dong-Xia
    Yao, Lin-Hong
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 3739 - 3743
  • [47] Boundary stabilisation of stochastic delay impulsive Korteweg-de Vries-Burgers equations
    Liang, Shuang
    Xue, Zhuo
    Wu, Kai-Ning
    INTERNATIONAL JOURNAL OF CONTROL, 2024,
  • [48] Passivity-based boundary control for Korteweg-de Vries-Burgers equations
    Liang, Shuang
    Wu, Kai-Ning
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 538 (01)
  • [49] Finite-time boundary stabilization for Korteweg-de Vries-Burgers equations
    Liang, Shuang
    Wu, Kai-Ning
    He, Ming-Xin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
  • [50] Inverse Optimal Control of Korteweg-de Vries-Burgers Equation
    Cai, Xiushan
    Lin, Yuhang
    Zhan, Xisheng
    Wan, Liguang
    Liu, Leibo
    Lin, Cong
    IFAC PAPERSONLINE, 2023, 56 (02): : 1351 - 1356