ON THE CONTROLLABILITY OF A COUPLED SYSTEM OF TWO KORTEWEG-DE VRIES EQUATIONS

被引:20
|
作者
Micu, Sorin [1 ]
Ortega, Jaime H. [2 ,3 ]
Pazoto, Ademir F. [4 ]
机构
[1] Univ Craiova, Fac Matemat Informat, Craiova 200585, Romania
[2] Univ Chile, Dept Ingn Matemat, UMI 2807, CNRS, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento, UMI 2807, CNRS, Santiago, Chile
[4] Univ Fed Rio de Janeiro, Inst Matemat, BR-21945970 Rio De Janeiro, Brazil
关键词
Korteweg-de Vries equation and system; boundary control; observation; local controllability; EXACT BOUNDARY CONTROLLABILITY; STABILIZABILITY; STABILIZATION;
D O I
10.1142/S0219199709003600
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves the local exact boundary controllability property of a nonlinear system of two coupled Korteweg-de Vries equations which models the interactions of weakly nonlinear gravity waves (see [10]). Following the method in [24], which combines the analysis of the linearized system and the Banach's fixed point theorem, the controllability problem is reduced to prove a nonstandard unique continuation property of the eigenfunctions of the corresponding differential operator.
引用
收藏
页码:799 / 827
页数:29
相关论文
共 50 条
  • [21] NULL CONTROLLABILITY OF A LINEARIZED KORTEWEG-DE VRIES EQUATION BY BACKSTEPPING APPROACH
    Xiang, S.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (02) : 1493 - 1515
  • [22] LAGRANGIAN CONTROLLABILITY OF THE 1-DIMENSIONAL KORTEWEG-DE VRIES EQUATION
    Gagnon, Ludovick
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (06) : 3152 - 3173
  • [23] OUTPUT FEEDBACK CONTROL OF A CASCADE SYSTEM OF LINEAR KORTEWEG-DE VRIES EQUATIONS
    Kitsos, Constantinos
    Cerpa, Eduardo
    Besancon, Gildas
    Prieur, Christophe
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (04) : 2955 - 2976
  • [24] Global Approximate Controllability of the Korteweg-de Vries Equation by a Finite-Dimensional Force
    Chen, Mo
    APPLIED MATHEMATICS AND OPTIMIZATION, 2023, 87 (01):
  • [25] Numerical studies of the damped Korteweg-de Vries system
    Rincon, M. A.
    Teixeira, F. S.
    Lopez, I. F.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 294 - 311
  • [26] BOUNDARY CONTROLLABILITY OF THE KORTEWEG-DE VRIES EQUATION ON A TREE-SHAPED NETWORK
    Cerpa, Eduardo
    Crepeau, Emmanuelle
    Valein, Julie
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (03): : 673 - 692
  • [27] Analysis and computation of a nonlinear Korteweg-de Vries system
    Rincon, Mauro A.
    Xavier, Juliana C.
    Alfaro Vigo, Daniel G.
    BIT NUMERICAL MATHEMATICS, 2016, 56 (03) : 1069 - 1099
  • [28] Boundary controllability for the Korteweg-de Vries-Burgers equation on a finite domain
    Li, Jie
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [29] Weak damping for the Korteweg-de Vries equation
    Capistrano-Filho, Roberto De A.
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (43) : 1 - 25
  • [30] On the boundary controllability of the Korteweg-de Vries equation on a star-shaped network
    Cerpa, Eduardo
    Crepeau, Emmanuelle
    Moreno, Claudia
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (01) : 226 - 240