NetKet: A machine learning toolkit for many-body quantum systems

被引:90
作者
Carleo, Giuseppe [1 ]
Choo, Kenny [2 ]
Hofmann, Damian [3 ]
Smith, James E. T. [4 ]
Westerhout, Tom [5 ]
Alet, Fabien [6 ]
Davis, Emily J. [7 ]
Efthymiou, Stavros [8 ]
Glasser, Ivan [8 ]
Lin, Sheng-Hsuan [9 ]
Mauri, Marta [1 ,10 ]
Mazzola, Guglielmo [11 ]
Mendl, Christian B. [12 ]
van Nieuwenburg, Evert [13 ]
O'Reilly, Ossian [14 ]
Theveniaut, Hugo [6 ]
Torlai, Giacomo [1 ]
Vicentini, Filippo [15 ]
Wietek, Alexander [1 ]
机构
[1] Flatiron Inst, Ctr Computat Quantum Phys, 162 5th Ave, New York, NY 10010 USA
[2] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
[4] Univ Colorado, Dept Chem, Boulder, CO 80302 USA
[5] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
[6] Univ Toulouse, Lab Phys Theor, IRSAMC, CNRS,UPS, F-31062 Toulouse, France
[7] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[8] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[9] Tech Univ Munich, Dept Phys, T42,James Franck Str 1, D-85748 Garching, Germany
[10] Univ Milan, Dipartimento Fis, Via Celoria 16, I-20133 Milan, Italy
[11] Swiss Fed Inst Technol, Theoret Phys, CH-8093 Zurich, Switzerland
[12] Tech Univ Dresden, Inst Sci Comp, Zellescher Weg 12-14, D-01069 Dresden, Germany
[13] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[14] Univ Southern Calif, Southern Calif Earthquake Ctr, 3651 Trousdale Pkwy, Los Angeles, CA 90089 USA
[15] Univ Paris, Lab Mat & Phenomenes Quant, CNRS, F-75013 Paris, France
关键词
Neural-network quantum states; Variational Monte Carlo; Quantum state tomography; Machine learning; Supervised learning; WAVE-FUNCTIONS; MONTE-CARLO;
D O I
10.1016/j.softx.2019.100311
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce NetKet, a comprehensive open source framework for the study of many-body quantum systems using machine learning techniques. The framework is built around a general and flexible implementation of neural-network quantum states, which are used as a variational ansatz for quantum wavefunctions. NetKet provides algorithms for several key tasks in quantum many-body physics and quantum technology, namely quantum state tomography, supervised learning from wavefunction data, and ground state searches for a wide range of customizable lattice models. Our aim is to provide a common platform for open research and to stimulate the collaborative development of computational methods at the interface of machine learning and many-body physics. (C) 2019 The Authors. Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 54 条
[1]  
Abadi M., 2015, TENSORFLOW LARGESCAL
[2]   The ALPS project release 1.3:: Open-source software for strongly correlated systems [J].
Albuquerque, A. F. ;
Alet, F. ;
Corboz, P. ;
Dayal, P. ;
Feiguin, A. ;
Fuchs, S. ;
Gamper, L. ;
Gull, E. ;
Guertler, S. ;
Honecker, A. ;
Igarashi, R. ;
Koerner, M. ;
Kozhevnikov, A. ;
Laeuchli, A. ;
Manmana, S. R. ;
Matsumoto, M. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Pawlowski, G. ;
Pollet, L. ;
Pruschke, T. ;
Schollwoeck, U. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) :1187-1193
[3]   Natural gradient works efficiently in learning [J].
Amari, S .
NEURAL COMPUTATION, 1998, 10 (02) :251-276
[4]  
[Anonymous], ARXIV190506034
[5]  
[Anonymous], JSON MODERN C GITHUB
[6]  
[Anonymous], 2018, ARXIV180805232
[7]  
[Anonymous], 2015, Nature, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[8]  
[Anonymous], ARXIV190300907
[9]  
[Anonymous], 2016, DEEP LEARNING
[10]  
[Anonymous], 2019, PYBIND11 SEAMLESS OP