Artificial intelligence for oral and maxillo-facial surgery: A narrative review

被引:26
作者
Rasteau, Simon [1 ]
Ernenwein, Didier [2 ]
Savoldelli, Charles [3 ]
Bouletreau, Pierre [1 ]
机构
[1] Claude Bernard Lyon 1 Univ, Lyon Sud Hosp, Hosp Civils Lyon, Maxillofacial Surg Facial Plast Surg Stomatol & S, 165 Chemin Grand Revoyet, F-69310 Pierre Benite, France
[2] Paris Diderot Univ, Childrens Hosp Robert Debre, Dept Pediat Oral & Maxillofacial & Plast Surg, Paris, France
[3] Cote dAzur Univ, Nice Univ Hosp, Univ Inst Face & Neck, 31 Ave Valombrose, F-06100 Nice, France
关键词
Artificial intelligence; Machine learning; Deep learning; Artificial neural network; Computer aided diagnosis; Oral and maxillofacial surgery; NEURAL-NETWORKS; CANCER; CLASSIFICATION; DIAGNOSIS;
D O I
10.1016/j.jormas.2022.01.010
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Artificial Intelligence (Al) is a set of technologies that simulate human cognition in order to address a specific problem. The improvement in computing speed, the exponential production and the routine collection of data have led to the rapid development of Al in the health sector. In this review, we propose to provide surgeons with the essential technical elements to help them understand the possibilities offered by Al and to review the current applications of Al for oral and maxillofacial surgery (OMFS). The review of the literature reveals a real research boom of Al in all fields in OMFS. The algorithms used are related to machine learning, with a strong representation of the convolutional neural networks specific to deep learning. The complex architecture of these networks gives them the capacity to extract and process the elementary characteristics of an image, and they are therefore particularly used for diagnostic purposes on medical imagery or facial photography. We identified representative articles dealing with Al algorithms providing assistance in diagnosis, therapeutic decision, preoperative planning, or prediction and evaluation of the outcomes. Thanks to their learning, classification, prediction and detection capabilities, Al algorithms complement human skills while limiting their imperfections. However, these algorithms should be subject to rigorous clinical evaluation, and ethical reflection on data protection should be systematically conducted. (C) 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:276 / 282
页数:7
相关论文
共 59 条
[1]   Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and Spherical Harmonics [J].
Abdolali, Fatemeh ;
Zoroofi, Reza Aghaeizadeh ;
Otake, Yoshito ;
Sato, Yoshinobu .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 139 :197-207
[2]   Comparison of supervised machine learning classification techniques in prediction of locoregional recurrences in early oral tongue cancer [J].
Alabi, Rasheed Omobolaji ;
Elmusrati, Mohammed ;
Sawazaki-Calone, Iris ;
Kowalski, Luiz Paulo ;
Haglund, Caj ;
Coletta, Ricardo D. ;
Makitie, Antti A. ;
Salo, Tuula ;
Almangush, Alhadi ;
Leivo, Ilmo .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2020, 136
[3]   Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique [J].
Ariji, Yoshiko ;
Yanashita, Yudai ;
Kutsuna, Syota ;
Muramatsu, Chisako ;
Fukuda, Motoki ;
Kise, Yoshitaka ;
Nozawa, Michihito ;
Kuwada, Chiaki ;
Fujita, Hiroshi ;
Katsumata, Akitoshi ;
Ariji, Eiichiro .
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2019, 128 (04) :424-430
[4]   Computer tomographic differential diagnosis of ameloblastoma and odontogenic keratocyst: classification using a convolutional neural network [J].
Bispo, Mayara Simoes ;
de Queiroz Pierre Junior, Mario Lucio Gomes ;
Apolinario Jr, Antonio Lopes ;
dos Santos, Jean Nunes ;
Carneiro Junior, Braulio ;
Neves, Frederico Sampaio ;
Crusoe-Rebello, Ieda .
DENTOMAXILLOFACIAL RADIOLOGY, 2021, 50 (07)
[5]   Artificial Intelligence: Applications in orthognathic surgery [J].
Bouletreau, P. ;
Makaremi, M. ;
Ibrahim, B. ;
Louvrier, A. ;
Sigaux, N. .
JOURNAL OF STOMATOLOGY ORAL AND MAXILLOFACIAL SURGERY, 2019, 120 (04) :347-354
[6]   Accuracy and reliability of automatic three-dimensional cephalometric landmarking [J].
Dot, G. ;
Rafflenbeul, F. ;
Arbotto, M. ;
Gajny, L. ;
Rouch, P. ;
Schouman, T. .
INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2020, 49 (10) :1367-1378
[7]   Ameloblastoma: current etiopathological concepts and management [J].
Effiom, O. A. ;
Ogundana, O. M. ;
Akinshipo, A. O. ;
Akintoye, S. O. .
ORAL DISEASES, 2018, 24 (03) :307-316
[8]   A guide to deep learning in healthcare [J].
Esteva, Andre ;
Robicquet, Alexandre ;
Ramsundar, Bharath ;
Kuleshov, Volodymyr ;
DePristo, Mark ;
Chou, Katherine ;
Cui, Claire ;
Corrado, Greg ;
Thrun, Sebastian ;
Dean, Jeff .
NATURE MEDICINE, 2019, 25 (01) :24-29
[9]   A deep learning algorithm for detection of oral cavity squamous cell carcinoma from photographic images: A retrospective study [J].
Fu, Qiuyun ;
Chen, Yehansen ;
Li, Zhihang ;
Jing, Qianyan ;
Hu, Chuanyu ;
Liu, Han ;
Bao, Jiahao ;
Hong, Yuming ;
Shi, Ting ;
Li, Kaixiong ;
Zou, Haixiao ;
Song, Yong ;
Wang, Hengkun ;
Wang, Xiqian ;
Wang, Yufan ;
Liu, Jianying ;
Liu, Hui ;
Chen, Sulin ;
Chen, Ruibin ;
Zhang, Man ;
Zhao, Jingjing ;
Xiang, Junbo ;
Liu, Bing ;
Jia, Jun ;
Wu, Hanjiang ;
Zhao, Yifang ;
Wan, Lin ;
Xiong, Xuepeng .
ECLINICALMEDICINE, 2020, 27
[10]   Comparison of 3 deep learning neural networks for classifying the relationship between the mandibular third molar and the mandibular canal on panoramic radiographs [J].
Fukuda, Motoki ;
Ariji, Yoshiko ;
Kise, Yoshitaka ;
Nozawa, Michihito ;
Kuwada, Chiaki ;
Funakoshi, Takuma ;
Muramatsu, Chisako ;
Fujita, Hiroshi ;
Katsumata, Akitoshi ;
Ariji, Eiichiro .
ORAL SURGERY ORAL MEDICINE ORAL PATHOLOGY ORAL RADIOLOGY, 2020, 130 (03) :336-343