Processing tomato production is expected to decrease by 2050 due to the projected increase in temperature

被引:74
作者
Cammarano, Davide [1 ]
Jamshidi, Sajad [2 ]
Hoogenboom, Gerrit [3 ]
Ruane, Alex C. [4 ]
Niyogi, Dev [2 ,5 ,6 ]
Ronga, Domenico [7 ]
机构
[1] Aarhus Univ, Ctr Circular Bioecon CBIO, Dept Agroecol, iClimate, Tjele, Denmark
[2] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA
[3] Univ Florida, Dept Agr & Biol Engn, Gainesville, FL USA
[4] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[5] Univ Texas Austin, Dept Geol Sci, Jackson Sch Geosci, Austin, TX 78712 USA
[6] Univ Texas Austin, Dept Civil Architectural & Environm Engn, Cockrell Sch Engn, Austin, TX 78712 USA
[7] Univ Salerno, Dept Pharm, Fisciano, Italy
来源
NATURE FOOD | 2022年 / 3卷 / 06期
关键词
WATER-USE EFFICIENCY; CLIMATE-CHANGE; MODEL; IRRIGATION; NITROGEN; YIELD; WHEAT; IMPROVEMENT; STRATEGIES; CALIFORNIA;
D O I
10.1038/s43016-022-00521-y
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
The global production of processing tomatoes is concentrated in a small number of regions where climate change could have a notable impact on the future supply. Process-based tomato models project that the production in the main producing countries (the United States, Italy and China, representing 65% of global production) will decrease 6% by 2050 compared with the baseline period of 1980-2009. The predicted reduction in processing tomato production is due to a projected increase in air temperature. Under an ensemble of projected climate scenarios, California and Italy might not be able to sustain current levels of processing tomato production due to water resource constraints. Cooler producing regions, such as China and the northern parts of California, stand to improve their competitive advantage. The projected environmental changes indicate that the main growing regions of processing tomatoes might change in the coming decades. The projected increase in temperature will decrease processing tomato production in the three main producing countries by 2050. Temperature increases and water resource constraints in the future might change the main processing tomato growing regions and shift the value chain in the coming decades.
引用
收藏
页码:437 / +
页数:10
相关论文
共 46 条
[1]  
[Anonymous], 2021, Tomato News
[2]  
Asseng S, 2013, NAT CLIM CHANGE, V3, P827, DOI [10.1038/NCLIMATE1916, 10.1038/nclimate1916]
[3]   California processing tomatoes: Morphological, physiological and phenological traits associated with crop improvement during the last 80 years [J].
Barrios-Masias, Felipe H. ;
Jackson, Louise E. .
EUROPEAN JOURNAL OF AGRONOMY, 2014, 53 :45-55
[4]   Modelling potential maize yield with climate and crop conditions around flowering [J].
Bassu, Simona ;
Fumagalli, Davide ;
Toreti, Andrea ;
Ceglar, Andrej ;
Giunta, Francesco ;
Motzo, Rosella ;
Zajac, Zuzanna ;
Niemeyer, Stefan .
FIELD CROPS RESEARCH, 2021, 271
[5]   Improving the CROPGRO-Tomato Model for Predicting Growth and Yield Response to Temperature [J].
Boote, Kenneth J. ;
Rybak, Maria R. ;
Scholberg, Johan M. S. ;
Jones, James W. .
HORTSCIENCE, 2012, 47 (08) :1038-1049
[6]   Impact of climate change on water and nitrogen use efficiencies of processing tomato cultivated in Italy [J].
Cammarano, D. ;
Ronga, D. ;
Di Mola, I. ;
Mori, M. ;
Parisi, M. .
AGRICULTURAL WATER MANAGEMENT, 2020, 241
[7]   COMMENTARY: Making the most of climate impacts ensembles [J].
Challinor, Andy ;
Martre, Pierre ;
Asseng, Senthold ;
Thornton, Philip ;
Ewert, Frank .
NATURE CLIMATE CHANGE, 2014, 4 (02) :77-80
[8]   What underlies inadequate and unequal fruit and vegetable consumption in India? An exploratory analysis [J].
Choudhury, Samira ;
Shankar, Bhavani ;
Aleksandrowicz, Lukasz ;
Tak, Mehroosh ;
Green, Rosemary ;
Harris, Francesca ;
Scheelbeek, Pauline ;
Dangour, Alan .
GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT, 2020, 24
[9]   Water- and nitrogen-saving potentials in tomato production: A meta-analysis [J].
Du, Ya-Dan ;
Niu, Wen-Quan ;
Gu, Xiao-Bo ;
Zhang, Qian ;
Cui, Bing-Jing .
AGRICULTURAL WATER MANAGEMENT, 2018, 210 :296-303
[10]   The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0) [J].
Elliott, J. ;
Mueller, C. ;
Deryng, D. ;
Chryssanthacopoulos, J. ;
Boote, K. J. ;
Buechner, M. ;
Foster, I. ;
Glotter, M. ;
Heinke, J. ;
Iizumi, T. ;
Izaurralde, R. C. ;
Mueller, N. D. ;
Ray, D. K. ;
Rosenzweig, C. ;
Ruane, A. C. ;
Sheffield, J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (02) :261-277