共 49 条
Low-intensity pulsed ultrasound ameliorates cardiac diastolic dysfunction in mice: a possible novel therapy for heart failure with preserved left ventricular ejection fraction
被引:33
作者:
Monma, Yuto
[1
]
Shindo, Tomohiko
[1
]
Eguchi, Kumiko
[1
]
Kurosawa, Ryo
[1
]
Kagaya, Yuta
[1
]
Ikumi, Yosuke
[1
]
Ichijo, Sadamitsu
[1
]
Nakata, Takashi
[1
]
Miyata, Satoshi
[2
]
Matsumoto, Ayana
[3
]
Sato, Haruka
[3
]
Miura, Masahito
[3
]
Kanai, Hiroshi
[4
,5
]
Shimokawa, Hiroaki
[1
]
机构:
[1] Tohoku Univ, Dept Cardiovasc Med, Grad Sch Med, Aoba Ku, 1-1 Seiryo Machi, Sendai, Miyagi 9808574, Japan
[2] Tohoku Univ, Dept Evidence Based Cardiovasc Med, Grad Sch Med, Sendai, Miyagi, Japan
[3] Tohoku Univ, Dept Clin Physiol, Grad Sch Med, Sendai, Miyagi, Japan
[4] Tohoku Univ, Dept Elect Engn, Grad Sch Engn, Sendai, Miyagi, Japan
[5] Tohoku Univ, Div Biomed Measurements & Diagnost, Grad Sch Biomed Engn, Sendai, Miyagi, Japan
基金:
日本学术振兴会;
关键词:
LIPUS;
Diastolic function;
Ca2+-handling system;
Non-invasive therapy;
eNOS-NO-cGMP-PKG pathway;
ENDOTHELIUM-DEPENDENT HYPERPOLARIZATION;
MOUSE MODEL;
MYOCARDIAL STIFFNESS;
NITRIC-OXIDE;
INHIBITION;
CONTRACTION;
FIBROSIS;
STRESS;
TRENDS;
STATE;
D O I:
10.1093/cvr/cvaa221
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Aims Heart failure with preserved left ventricular ejection fraction (HFpEF) is a serious health problem worldwide, as no effective therapy is yet available. We have previously demonstrated that our low-intensity pulsed ultrasound (LIPUS) therapy is effective and safe for angina and dementia. In this study, we aimed to examine whether the LIPUS therapy also ameliorates cardiac diastolic dysfunction in mice. Methods and results Twelve-week-old obese diabetic mice (db/db) and their control littermates (db/+) were treated with either the LIPUS therapy [1.875 MHz, 32 cycles, Ispta (spatial peak temporal average intensity) 117 162 mW/cm(2), 0.25 W/cm(2)] or placebo procedure two times a week for 4 weeks. At 20-week-old, transthoracic echocardiography and invasive haemodynamic analysis showed that cardiac diastolic function parameters, such as e', E/e', end-diastolic pressure-volume relationship, Tau, and dP/dt min, were all deteriorated in placebo-treated db/db mice compared with db/+ mice, while systolic function was preserved. Importantly, these cardiac diastolic function parameters were significantly ameliorated in the LIPUS-treated db/db mice. We also measured the force (F) and intracellular Ca2+([Ca2+](i)) in trabeculae dissected from ventricles. We found that relaxation time and [Ca2+](i) decay (Tau) were prolonged during electrically stimulated twitch contractions in db/db mice, both of which were significantly ameliorated in the LIPUS-treated db/db mice, indicating that the LIPUS therapy also improves relaxation properties at tissue level. Functionally, exercise capacity was also improved in the LIPUS-treated db/db mice. Histologically, db/db mice displayed progressed cardiomyocyte hypertrophy and myocardial interstitial fibrosis, white those changes were significantly suppressed in the LIPUS-treated db/db mice. Mechanistically, western blot showed that the endothelial nitric oxide synthase (eNOS)-nitric oxide (NO)-cGMP-protein kinase G (PKG) pathway and Ca 2f -handling molecules were up-regulated in the LIPUS-treated heart. Conclusions These results indicate that the LIPUS therapy ameliorates cardiac diastolic dysfunction in db/db mice through improvement of eNOS-NO-cGMP-PKG pathway and cardiomyocyte Ca2+-handling system, suggesting its potential usefulness for the treatment of HFpEF patients. [GRAPHICS] .
引用
收藏
页码:1325 / 1338
页数:14
相关论文
共 49 条