Preparation of BSA nanoparticles using aqueous urea at T=308.15, 313.15 and 318.15 K as a function of temperature

被引:14
作者
Shankar, K. Ravi [1 ]
Ameta, R. K. [2 ]
Singh, Man [1 ,2 ]
机构
[1] Cent Univ Gujarat, Ctr NanoSci, Gandhinagar 382030, India
[2] Cent Univ Gujarat, Sch Chem Sci, Gandhinagar 382030, India
关键词
Bovine serum albumin; Nanoparticle; Aqueous urea; DLS; TEM; HUMAN-SERUM-ALBUMIN; DRUG-DELIVERY; PROTEIN NANOPARTICLES; HSA-NANOPARTICLES; BIODISTRIBUTION; GLUTARALDEHYDE; PRECIPITATION; MECHANISM; MEMBRANE; SYSTEMS;
D O I
10.1016/j.molliq.2016.02.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The optimized 10 mM urea in an aqueous medium structurally engineered bovine serum albumin nanoparticles using acetone as a desolvating agent on simultaneous ultrasonicating at 308.15, 313.15 and 318.15 K. The use of aq. urea has reduced 50, 56.25 and 62.5% consumption of acetone at respective temperatures as compared to conventional methods, a sustainable mechanistic approach. The aq. urea has found to be effective to produce homogeneously distributed BSA nanoparticles within 16 to 55 rim range with spherical morphology analyzed by dynamic light scattering and transmission electron microscopy. The UV/vis studies that elucidated a dominance of hydrophobic interactions of protein nanoparticles might be responsible for the agglomerates formation by 5% BSA out of 1, 2, 3 and 4% at chosen temperatures. The interaction effect of urea with acetone at chosen temperature was monitored to deduce their impact on size, Zeta potential, and absorbance supported the BSA nanoparticle formation. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:808 / 813
页数:6
相关论文
共 46 条
[1]   Sol-gel-entrapped cholinesterases: A microtiter plate method for monitoring anti-cholinesterase compounds [J].
Altstein, M ;
Segev, G ;
Aharonson, N ;
Ben-Aziz, O ;
Turniansky, A ;
Avnir, D .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 1998, 46 (08) :3318-3324
[2]   Antioxidant nanozyme: a facile synthesis and evaluation of the reactive oxygen species scavenging potential of nanoceria encapsulated albumin nanoparticles [J].
Bhushan, Bharat ;
Gopinath, P. .
JOURNAL OF MATERIALS CHEMISTRY B, 2015, 3 (24) :4843-4852
[3]   3-DIMENSIONAL STRUCTURE OF HUMAN-SERUM ALBUMIN [J].
CARTER, DC ;
HE, XM ;
MUNSON, SH ;
TWIGG, PD ;
GERNERT, KM ;
BROOM, MB ;
MILLER, TY .
SCIENCE, 1989, 244 (4909) :1195-1198
[4]   Urea orientation at protein surfaces [J].
Chen, Xin ;
Sagle, Laura B. ;
Cremer, Paul S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (49) :15104-+
[5]   Nanoparticle albumin-bound (nab™)-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer [J].
Cortes, Javier ;
Saura, Cristina .
EJC SUPPLEMENTS, 2010, 8 (01) :1-10
[6]   Fluorescent, Bioactive Protein Nanoparticles (Prodots) for Rapid, Improved Cellular Uptake [J].
Deshapriya, Inoka K. ;
Stromer, Bobbi S. ;
Pattammattel, Ajith ;
Kim, Christina S. ;
Iglesias-Bartolome, Ramiro ;
Gonzalez-Fajardo, Laura ;
Patel, Vyomesh ;
Gutkind, J. Silvio ;
Lu, Xiuling ;
Kumar, Challa V. .
BIOCONJUGATE CHEMISTRY, 2015, 26 (03) :396-404
[7]   Albumin-based nanoparticles as potential controlled release drug delivery systems [J].
Elzoghby, Ahmed O. ;
Samy, Wael M. ;
Elgindy, Nazik A. .
JOURNAL OF CONTROLLED RELEASE, 2012, 157 (02) :168-182
[8]  
Fershi A.R., 1999, STRUCTURE MECH PROTE
[9]  
FIGGE J, 1991, J LAB CLIN MED, V117, P453
[10]  
Ge J, 2012, NAT NANOTECHNOL, V7, P428, DOI [10.1038/nnano.2012.80, 10.1038/NNANO.2012.80]