Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI

被引:78
作者
Zhang, L. [1 ]
Jacob, D. J. [1 ,2 ]
Liu, X. [3 ,4 ,5 ]
Logan, J. A. [2 ]
Chance, K. [4 ]
Eldering, A. [6 ]
Bojkov, B. R. [7 ]
机构
[1] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA
[4] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[5] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[6] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[7] European Space Agcy ESA ESRIN, Sci Applicat & Future Technol Dept, I-00044 Frascati, RM, Italy
关键词
UNITED-STATES; EMISSION SPECTROMETER; STRATOSPHERIC OZONE; HIGH-RESOLUTION; AIR-QUALITY; 3-D MODELS; A-PRIORI; CHEMISTRY; TRANSPORT; POLLUTION;
D O I
10.5194/acp-10-4725-2010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We analyze the theoretical basis of three different methods to validate and intercompare satellite measurements of atmospheric composition, and apply them to tropospheric ozone retrievals from the Tropospheric Emission Spectrometer (TES) and the Ozone Monitoring Instrument (OMI). The first method (in situ method) uses in situ vertical profiles for absolute instrument validation; it is limited by the sparseness of in situ data. The second method (CTM method) uses a chemical transport model (CTM) as an intercomparison platform; it provides a globally complete intercomparison with relatively small noise from model error. The third method (averaging kernel smoothing method) involves smoothing the retrieved profile from one instrument with the averaging kernel matrix of the other; it also provides a global intercomparison but dampens the actual difference between instruments and adds noise from the a priori. We apply the three methods to a full year (2006) of TES and OMI data. Comparison with in situ data from ozonesondes shows mean positive biases of 5.3 parts per billion volume (ppbv) (10%) for TES and 2.8 ppbv (5%) for OMI at 500 hPa. We show that the CTM method (using the GEOS-Chem CTM) closely approximates results from the in situ method while providing global coverage. It reveals that differences between TES and OMI are generally less than 10 ppbv (18%), except at northern mid-latitudes in summer and over tropical continents. The CTM method further allows for CTM evaluation using both satellite observations. We thus find that GEOS-Chem underestimates tropospheric ozone in the tropics due to possible underestimates of biomass burning, soil, and lightning emissions. It overestimates ozone in the northern subtropics and southern mid-latitudes, likely because of excessive stratospheric influx of ozone.
引用
收藏
页码:4725 / 4739
页数:15
相关论文
共 66 条
[1]  
[Anonymous], CLIMATE CHANGE 2001
[2]   AIRS/AMSU/HSB on the aqua mission: Design, science objectives, data products, and processing systems [J].
Aumann, HH ;
Chahine, MT ;
Gautier, C ;
Goldberg, MD ;
Kalnay, E ;
McMillin, LM ;
Revercomb, H ;
Rosenkranz, PW ;
Smith, WL ;
Staelin, DH ;
Strow, LL ;
Susskind, J .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (02) :253-264
[3]   A model investigation of tropospheric ozone chemical tendencies in long-range transported pollution plumes [J].
Auvray, M. ;
Bey, I. ;
Llull, E. ;
Schultz, M. G. ;
Rast, S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D5)
[4]   TES on the Aura mission: Scientific objectives, measurements, and analysis overview [J].
Beer, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (05) :1102-1105
[5]   Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation [J].
Bey, I ;
Jacob, DJ ;
Yantosca, RM ;
Logan, JA ;
Field, BD ;
Fiore, AM ;
Li, QB ;
Liu, HGY ;
Mickley, LJ ;
Schultz, MG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) :23073-23095
[6]   Tropospheric emission spectrometer: Retrieval method and error analysis [J].
Bowman, KW ;
Rodgers, CD ;
Kulawik, SS ;
Worden, J ;
Sarkissian, E ;
Osterman, G ;
Steck, T ;
Lou, M ;
Eldering, A ;
Shephard, M ;
Worden, H ;
Lampel, M ;
Clough, S ;
Brown, P ;
Rinsland, C ;
Gunson, M ;
Beer, R .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (05) :1297-1307
[7]  
BOXE CS, 2009, ATMOS CHEM PHYS DISC, V9, P27267, DOI DOI 10.5194/ACPD-9-27267-2009
[8]   Measurements of total and tropospheric ozone from IASI: comparison with correlative satellite, ground-based and ozonesonde observations [J].
Boynard, A. ;
Clerbaux, C. ;
Coheur, P. -F. ;
Hurtmans, D. ;
Turquety, S. ;
George, M. ;
Hadji-Lazaro, J. ;
Keim, C. ;
Meyer-Arnek, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (16) :6255-6271
[9]   MOZART, a global chemical transport model for ozone and related chemical tracers 1. Model description [J].
Brasseur, GP ;
Hauglustaine, DA ;
Walters, S ;
Rasch, PJ ;
Muller, JF ;
Granier, C ;
Tie, XX .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D21) :28265-28289
[10]   Interannual and seasonal variability of biomass burning emissions constrained by satellite observations [J].
Duncan, BN ;
Martin, RV ;
Staudt, AC ;
Yevich, R ;
Logan, JA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D2)