Trends in anthropogenic carbon in the Arctic Ocean

被引:13
作者
Rajasakaren, Balamuralli [1 ]
Jeansson, Emil [1 ]
Olsen, Are [2 ]
Tanhua, Toste [3 ]
Johannessen, Truls [2 ]
Smethie, W. M., Jr. [4 ]
机构
[1] Bjerknes Ctr Climate Res, NORCE Norwegian Res Ctr, Bergen, Norway
[2] Univ Bergen, Bjerknes Ctr Climate Res, Geophys Inst, Bergen, Norway
[3] GEOMAR Helmholtz Ctr Ocean Res Kiel, Kiel, Germany
[4] Lamont Doherty Earth Observ, Palisades, NY 10964 USA
基金
美国国家科学基金会;
关键词
TRANSIT-TIME DISTRIBUTIONS; OXYGEN UTILIZATION RATES; SEA-ICE; SULFUR-HEXAFLUORIDE; NORTH-ATLANTIC; DEEP WATERS; FRAM STRAIT; INTERMEDIATE LAYERS; BOUNDARY CURRENT; LOMONOSOV RIDGE;
D O I
10.1016/j.pocean.2019.102177
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
This study evaluates the trends in anthropogenic carbon (C-ant) in the different sub-basins of the Arctic Ocean between 1987 and 2015. Data were extracted from the GLODAPv2 data product as well as two GEOTRACERS cruises in the Arctic Ocean from 2015 and C-ant was evaluated using the transient time distribution (TTD) approach. In the Nansen and Amundsen sub-basins, the C-ant trend in the Atlantic Waters (AW, depths: 200-500 m) and dense AW (dAW, depths: 500-800 m) is about + 0.7 mu mol kg(-1) yr(-1). As we move into the Makarov and West Canadian sub-basins, the C-ant trend in the AW and dAW is smaller. The upper Polar Deep Water (uPDW, depths: 800-1600 m) has a C-ant trend of about +0.4-0.5 mu mol kg(-1) yr(-1) in the Nansen, Amundsen and West Canadian sub-basins. The trend is smallest in the South Canadian sub-basin, with a value of about + 0.2 mu mol kg(-1) yr(-1). Ventilation primarily governs C(ant )trends while the influence of the Revelle factor plays a secondary role. The increase in the C-ant column inventory is estimated to be 0.7-1.0 mol C m(-2) yr(-1) in the Nansen, Amundsen and Makarov sub-basins. By extrapolating the results from our defined sub-basins to the full Arctic Ocean, we estimate an C-ant accumulation of 25 Tg C yr(-1) in the Arctic Ocean and an inventory of about 3.6-3.9 Pg C between 2005 and 2015.
引用
收藏
页数:14
相关论文
共 127 条
[1]   THERMOHALINE CIRCULATION IN THE ARCTIC MEDITERRANEAN SEAS [J].
AAGAARD, K ;
SWIFT, JH ;
CARMACK, EC .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1985, 90 (NC3) :4833-4846
[2]  
Aagaard K.A., 1989, Rapp. P. V. Reun.Cons. Int. Explor. Mer Mediter, V188, P11, DOI DOI 10.17895/ICES.PUB.19279133
[3]   The Arctic Circumpolar Boundary Current [J].
Aksenov, Yevgeny ;
Ivanov, Vladimir V. ;
Nurser, A. J. George ;
Bacon, Sheldon ;
Polyakov, Igor V. ;
Coward, Andrew C. ;
Naveira-Garabato, Alberto C. ;
Beszczynska-Moeller, Agnieszka .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
[4]   Anthropogenic carbon dioxide in the Arctic Ocean: Inventory and sinks [J].
Anderson, LG ;
Olsson, K ;
Jones, EP ;
Chierici, M ;
Fransson, A .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1998, 103 (C12) :27707-27716
[5]  
[Anonymous], 2005, ARCTIC BASIN RESULTS
[6]  
[Anonymous], 1994, POLAR OCEANS THEIR R, DOI DOI 10.1029/GM085P0005
[7]   Secular trends in Arctic Ocean net primary production [J].
Arrigo, Kevin R. ;
van Dijken, Gert L. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
[8]   Impact of a shrinking Arctic ice cover on marine primary production [J].
Arrigo, Kevin R. ;
van Dijken, Gert ;
Pabi, Sudeshna .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (19)
[9]   Quantifying the Influence of Atlantic Heat on Barents Sea Ice Variability and Retreat [J].
Arthun, M. ;
Eldevik, T. ;
Smedsrud, L. H. ;
Skagseth, O. ;
Ingvaldsen, R. B. .
JOURNAL OF CLIMATE, 2012, 25 (13) :4736-4743
[10]   The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks [J].
Bates, N. R. ;
Mathis, J. T. .
BIOGEOSCIENCES, 2009, 6 (11) :2433-2459