Magnetic diphase nanostructure of ZnFe2O4/γ-Fe2O3

被引:36
作者
Bo, Xiangxi
Li, Guangshe
Qiu, Xiaoqing
Xue, Yanfeng
Li, Liping [1 ]
机构
[1] Chinese Acad Sci, State Key Struct Chem Lab, Grad Sch, Fuzhou 350002, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, Grad Sch, Fuzhou 350002, Peoples R China
[3] Jilin Univ, Dept Phys, Changchun 130023, Peoples R China
基金
中国国家自然科学基金;
关键词
solvothermal; ZnFe2O4; gamma-Fe2O3; diphase nanostructure; superparamagnetic;
D O I
10.1016/j.jssc.2006.12.034
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Magnetic diphase nanostructures of ZnFe2O4/gamma-Fe2O3 were synthesized by a solvothermal method. The formation reactions were optimized by tuning the initial molar ratios of Fe/Zn. All samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, and Raman spectra. It is found that when the initial molar ratio of Fe/Zn is larger than 2, a diphase magnetic natiostructure of ZnFe2O4/gamma-Fe2O3 was formed, in which the presence of ZnFe2O4 enhanced the thermal stability of gamma-Fe2O3. Further increasing the initial molar ratio of Fe/Zn larger than 6 destabilized the diphase nanostructure and yielded traces of secondary phase alpha-Fe2O3. The grain surfaces of diphase nanostructure exhibited a spin-glass-like structure. At room temperature, all diphase nanostructures are superparamagnetic with saturation magnetization being increased with gamma-Fe2O3 content. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1038 / 1044
页数:7
相关论文
共 40 条
[1]   SIZE-INDUCED STRUCTURAL PHASE-TRANSITIONS AND HYPERFINE PROPERTIES OF MICROCRYSTALLINE FE2O3 [J].
AYYUB, P ;
MULTANI, M ;
BARMA, M ;
PALKAR, VR ;
VIJAYARAGHAVAN, R .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1988, 21 (11) :2229-2245
[2]   Influence of grain size, oxygen stoichiometry, and synthesis conditions on the γ-Fe2O3 vacancies ordering and lattice parameters [J].
Belin, T ;
Guigue-Millot, N ;
Caillot, T ;
Aymes, D ;
Niepce, JC .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 163 (02) :459-465
[3]   How to tailor maghemite particle size in γ-Fe2O3-SiO2 nanocomposites [J].
Cannas, C ;
Concas, G ;
Gatteschi, D ;
Musinu, A ;
Piccaluga, G ;
Sangregorio, C .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (10) :3141-3146
[4]   Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: A computer simulation and spectroscopic study [J].
Chamritski, I ;
Burns, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (11) :4965-4968
[5]   Hydrothermal synthesis and characterization of nanocrystalline γ-Fe2O3 particles [J].
Chen, DR ;
Xu, RR .
JOURNAL OF SOLID STATE CHEMISTRY, 1998, 137 (02) :185-190
[6]   Characteristics and genesis of maghemite in Chinese loess and paleosols: Mechanism for magnetic susceptibility enhancement in paleosols [J].
Chen, TH ;
Xu, HF ;
Xie, QQ ;
Chen, J ;
Ji, JF ;
Lu, HY .
EARTH AND PLANETARY SCIENCE LETTERS, 2005, 240 (3-4) :790-802
[7]   A combined ab initio and atomistic simulation study of the surface and interfacial structures and energies of hydrated scheelite:: introducing a CaWO4 potential model [J].
Cooper, TG ;
de Leeuw, NH .
SURFACE SCIENCE, 2003, 531 (02) :159-176
[8]  
Cornell R. M., 1996, The Iron Oxides
[9]   Synthesis, microstructure and magnetic properties of Ni-Zn ferrites [J].
Costa, ACFM ;
Tortella, E ;
Morelli, MR ;
Kiminami, RHGA .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 256 (1-3) :174-182
[10]   Hydrothermal synthesis of monodisperse magnetite nanoparticles [J].
Daou, T. J. ;
Pourroy, G. ;
Begin-Colin, S. ;
Greneche, J. M. ;
Ulhaq-Bouillet, C. ;
Legare, P. ;
Bernhardt, P. ;
Leuvrey, C. ;
Rogez, G. .
CHEMISTRY OF MATERIALS, 2006, 18 (18) :4399-4404