Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering

被引:226
作者
Bisht, Ankita [1 ]
Srivastava, Mukul [1 ,2 ]
Kumar, R. Manoj [1 ]
Lahiri, Indranil [2 ]
Lahiri, Debrupa [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Met & Mat Engn, Biomat & Multiscale Mech Lab, Uttarakhand 247667, India
[2] Indian Inst Technol Roorkee, Dept Met & Mat Engn, Nanomat & Applicat Lab, Uttarakhand 247667, India
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2017年 / 695卷
关键词
Graphene nanoplatelets; Aluminum; Spark plasma sintering; Orowan strengthening mechanism; METAL-MATRIX NANOCOMPOSITES; CARBON NANOTUBES; BEHAVIOR; MICROSTRUCTURE; POLYETHYLENE; MODEL;
D O I
10.1016/j.msea.2017.04.009
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene nanoplatelets (GNP) reinforced aluminum matrix composites, with <= 5 wt% GNP content, were synthesized by spark plasma sintering (SPS). GNPs were found to withstand severe conditions of high pressure and temperature during processing. Strength of composite was observed to be depending on the content and uniform dispersion of GNP in aluminum matrix, as verified by scanning electron micrographs. X-ray diffraction analysis confirmed that no reaction products exist at Al-GNP interface in significant amount. Instrumented indentation studies revealed improvement in hardness by 21.4% with 1 wt% GNP. This is due to the presence of stronger reinforcement, which provides high resistance to matrix against deformation. Improvement in yield strength and tensile strength was 84.5% and 54.8%, respectively, with 1 wt% GNP reinforcement. Properties deteriorated at higher concentration due to agglomeration of GNP. Reinforcing effect of GNPs, in terms of strengthening of composite, is found to be dominated by Orowan strengthening mechanism. Pinning of grains boundaries by GNPs led to uniform grain size distribution in the composites structure. Overall, graphene reinforcement has offered 86% improvement in specific strength of aluminum matrix.
引用
收藏
页码:20 / 28
页数:9
相关论文
共 42 条
  • [1] Anandhan S, 2011, NANOCOMPOSITES AND POLYMERS WITH ANALYTICAL METHODS, P3
  • [2] [Anonymous], GRAPHENE REINFORCED
  • [3] DISLOCATION GENERATION DUE TO DIFFERENCES BETWEEN THE COEFFICIENTS OF THERMAL-EXPANSION
    ARSENAULT, RJ
    SHI, N
    [J]. MATERIALS SCIENCE AND ENGINEERING, 1986, 81 (1-2): : 175 - 187
  • [4] The Effect of Ball Milling & Reinforcement Percentage on Sintered Samples of Aluminium Alloy Metal Matrix Composites
    Ashwath, P.
    Xavior, M. Anthony
    [J]. 12TH GLOBAL CONGRESS ON MANUFACTURING AND MANAGEMENT (GCMM - 2014), 2014, 97 : 1027 - 1032
  • [5] Carbon nanotube reinforced metal matrix composites - a review
    Bakshi, S. R.
    Lahiri, D.
    Agarwal, A.
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2010, 55 (01) : 41 - 64
  • [6] Graphene-aluminum nanocomposites
    Bartolucci, Stephen F.
    Paras, Joseph
    Rafiee, Mohammad A.
    Rafiee, Javad
    Lee, Sabrina
    Kapoor, Deepak
    Koratkar, Nikhil
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (27): : 7933 - 7937
  • [7] Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites
    Boostani, A. Fadavi
    Yazdani, S.
    Mousavian, R. Taherzadeh
    Tahamtan, S.
    Khosroshahi, R. Azari
    Wei, D.
    Brabazon, D.
    Xu, J. Z.
    Zhang, X. M.
    Jiang, Z. Y.
    [J]. MATERIALS & DESIGN, 2015, 88 : 983 - 989
  • [8] The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene glycol
    Cao, Linlin
    Li, Zhiqiang
    Fan, Genlian
    Jiang, Lin
    Zhang, Di
    Moon, Won-Jin
    Kim, Yang-Soo
    [J]. CARBON, 2012, 50 (03) : 1057 - 1062
  • [9] Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing
    Cha, SI
    Kim, KT
    Arshad, SN
    Mo, CB
    Hong, SH
    [J]. ADVANCED MATERIALS, 2005, 17 (11) : 1377 - +
  • [10] Carbon fibers for composites
    Chand, S
    [J]. JOURNAL OF MATERIALS SCIENCE, 2000, 35 (06) : 1303 - 1313