Hamiltonicity of complements of middle graphs

被引:1
作者
An, Xinhui [1 ]
Wu, Baoyindureng [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Xinjiang 830046, Peoples R China
关键词
middle graph; complement; Hamilton cycle;
D O I
10.1016/j.disc.2006.07.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, the middle graph M (G) of G is the graph with vertex set V (G) boolean OR E (G) in which the vertices x and y are joined by an edge if {x, y} boolean AND E (G) not equal 0, and x and y are adjacent or incident in G. In this note, we show that the complement of middle graph M(G) of a graph G is hamiltonian if and only if G is not a star and is not isomorphic to any graph in {K-1, 2K(1), K-2, K-2 boolean OR K-1, K-3, K-3 boolean OR K-1} (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1178 / 1184
页数:7
相关论文
共 13 条
[1]  
BAUER D, 1982, J COMBIN INFORM SYST, V7, P54
[2]  
Bondy J.A., 2008, GRAD TEXTS MATH
[3]   Subgraph distances in graphs defined by edge transfers [J].
Chartrand, G ;
Hevia, H ;
Jarrett, EB ;
Schultz, M .
DISCRETE MATHEMATICS, 1997, 170 (1-3) :63-79
[4]  
Chvatal V., 1972, DISCRETE MATH, V2, P111, DOI DOI 10.1016/0012-365X(72)90079-9
[5]   HAMILTONIAN TOTAL GRAPHS [J].
FLEISCHNER, H ;
HOBBS, AM .
MATHEMATISCHE NACHRICHTEN, 1975, 68 :59-82
[6]   TRAVERSABILITY AND CONNECTIVITY OF MIDDLE GRAPH OF A GRAPH [J].
HAMADA, T ;
YOSHIMURA, I .
DISCRETE MATHEMATICS, 1976, 14 (03) :247-255
[7]  
Harary F., 1965, CANAD MATH B, V8, P701, DOI DOI 10.4153/CMB-1965-051-3
[8]  
Harary F., 1972, Graph Theory
[9]  
Hemminger R.L., 1978, Selected Topics in Graph Theory, P271
[10]  
MA G, IN PRESS HAMILTONICI