Refined drift-diffusion model for the simulation of charge transport across layer interfaces in organic semiconductor devices

被引:17
作者
Altazin, S. [1 ]
Kirsch, C. [2 ]
Knapp, E. [2 ]
Stous, A. [1 ]
Ruhstaller, B. [1 ,2 ]
机构
[1] Fluxim AG, Katharina Sulzer Pl 2, CH-8400 Winterthur, Switzerland
[2] Zurich Univ Appl Sci, Inst Computat Phys, Winterthur, Switzerland
基金
瑞士国家科学基金会;
关键词
LIGHT-EMITTING-DIODES; RECOMBINATION;
D O I
10.1063/1.5043245
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a new approach to simulate the transport of charges across organic/organic layer interfaces in organic semiconductor devices. This approach combines the drift-diffusion formalism away from the interface with a hopping description of the charge transport in the vicinity of the interface. It has been implemented in the commercial software SETFOS allowing for fast simulations of the complete device. This new model takes into account both recombination and generation mechanisms across the interface enabling the modeling of charge-generation/recombination interfaces for the numerical simulation of tandem devices. Using this approach, it is also possible to simulate devices using 1,4,5,8,9,11-Hexaazatriphenylenehexacarbonitrile as a hole-injection layer. This particular material has a very deep HOMO level (approximately 9.5 eV), which would seemingly prevent such a layer to be used as a hole-injection material in the framework of traditional drift-diffusion models. (C) 2018 Author(s).
引用
收藏
页数:8
相关论文
共 36 条
[1]   Simulation of OLEDs with a polar electron transport layer [J].
Altazin, S. ;
Zufle, S. ;
Knapp, E. ;
Kirsch, C. ;
Schmidt, T. D. ;
Jaeger, L. ;
Noguchi, Y. ;
Bruetting, W. ;
Ruhstaller, B. .
ORGANIC ELECTRONICS, 2016, 39 :244-249
[2]   Physics of the frequency response of rectifying organic Schottky diodes [J].
Altazin, Stephane ;
Clerc, Raphael ;
Gwoziecki, Romain ;
Verilhac, Jean-Marie ;
Boudinet, Damien ;
Pananakakis, Georges ;
Ghibaudo, Gerard ;
Chartier, Isabelle ;
Coppard, Romain .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (06)
[3]   Charge carrier transport and recombination at the interface between disordered organic dielectrics [J].
Arkhipov, VI ;
Emelianova, EV ;
Bässler, H .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (05) :2352-2357
[4]   Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder [J].
Coehoorn, R ;
Pasveer, WF ;
Bobbert, PA ;
Michels, MAJ .
PHYSICAL REVIEW B, 2005, 72 (15)
[5]   Modeling of charge transport across disordered organic heterojunctions [J].
Cottaar, J. ;
Coehoorn, R. ;
Bobbert, P. A. .
ORGANIC ELECTRONICS, 2012, 13 (04) :667-672
[6]   Multiscale modeling and simulation of organic solar cells [J].
de Falco, Carlo ;
Porro, Matteo ;
Sacco, Riccardo ;
Verri, Maurizio .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 245 :102-116
[7]  
Fluxim AG, 2018, SETFOS 4 6 USER MANU
[8]  
Hess K., 1991, P 4 INT C SIM SEM DE, V4, P303
[9]   MOLED:: Simulation of multilayer organic light emitting diodes [J].
Houili, H ;
Tutis, E ;
Lütjens, H ;
Bussac, MN ;
Zuppiroli, L .
COMPUTER PHYSICS COMMUNICATIONS, 2003, 156 (01) :108-122
[10]   Intermolecular charge transfer between heterocyclic oligomers. Effects of heteroatom and molecular packing on hopping transport in organic semiconductors [J].
Hutchison, GR ;
Ratner, MA ;
Marks, TJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (48) :16866-16881