Tethering Luminescent Thermometry and Plasmonics: Light Manipulation to Assess Real-Time Thermal Flow in Nanoarchitectures

被引:50
作者
Brites, Carlos D. S. [1 ,2 ]
Cecilia Fuertes, Maria [3 ,4 ]
Angelome, Paula C. [3 ]
Martinez, Eduardo D. [3 ]
Lima, Patricia P. [1 ,2 ]
Soler-Illia, Galo J. A. A. [5 ]
Carlos, Luis D. [1 ,2 ]
机构
[1] Univ Aveiro, Dept Fis, Campus Santiago, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, CICECO Aveiro Inst Mat, Campus Santiago, P-3810193 Aveiro, Portugal
[3] Consejo Nacl Invest Cient & Tecn, CNEA, Gerencia Quim, Ave Gral Paz 1499,B1650KNA, Buenos Aires, DF, Argentina
[4] CNEA, UNSAM, Inst Sabato, Ave Gral Paz 1499,B1650KNA, Buenos Aires, DF, Argentina
[5] Consejo Nacl Invest Cient & Tecn, INS UNSAM, Ave 25 Mayo 1021, Buenos Aires, DF, Argentina
关键词
Mesoporous thin films; luminescent molecular thermometry; plasmonic heating; thermal conductivity; gold nanoparticles; HEAT-TRANSFER; CONDUCTIVITY; FILMS; NANOSCALE; NANOPARTICLES; TRANSPORT;
D O I
10.1021/acs.nanolett.7b01433
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The past decade has seen significant progresses in the ability to fabricate new mesoporous thin films with highly controlled pore systems and emerging applications in sensing, electrical and thermal isolation, microfluidics, solar cells engineering, energy storage, and catalysis. Heat management at the micro- and nanoscale is a key issue in most of these applications, requiring a complete thermal characterization of the films that is commonly performed using electrical methods. Here, plasmonic-induced heating (through Au NPs) is combined with Tb3+/Eu3+ luminescence thermometry to measure the thermal conductivity of silica and titania mesoporous nanolayers. This innovative method yields values in accord with those measured by the evasive and destructive conventional 3 omega-electrical method, simultaneously overcoming their main limitations, for example, a mandatory deposition of additional isolating and metal layers over the films and the previous knowledge of the thermal contact resistance between the heating and the mesoporous layers.
引用
收藏
页码:4746 / 4752
页数:7
相关论文
共 44 条
[1]   Thermo-plasmonics: using metallic nanostructures as nano-sources of heat [J].
Baffou, Guillaume ;
Quidant, Romain .
LASER & PHOTONICS REVIEWS, 2013, 7 (02) :171-187
[2]  
Bergman T.L., 2011, Introduction to Heat Transfer, DOI DOI 10.1016/J.APPLTHERMALENG.2011.03.022
[3]   Thermal conductivity of heat treated mesoporous silica particles [J].
Bippus, Laurent ;
Jaber, Maguy ;
Lebeau, Benedicte ;
Schleich, Donald ;
Scudeller, Yves .
MICROPOROUS AND MESOPOROUS MATERIALS, 2014, 190 :109-116
[4]  
Brinker CJ, 1999, ADV MATER, V11, P579, DOI 10.1002/(SICI)1521-4095(199905)11:7<579::AID-ADMA579>3.0.CO
[5]  
2-R
[6]  
Brites CDS, 2016, HBK PHYS CHEM RARE, V49, P339, DOI 10.1016/bs.hpcre.2016.03.005
[7]  
Brites CDS, 2016, NAT NANOTECHNOL, V11, P851, DOI [10.1038/nnano.2016.111, 10.1038/NNANO.2016.111]
[8]   A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale [J].
Brites, Carlos D. S. ;
Lima, Patricia P. ;
Silva, Nuno J. O. ;
Millan, Angel ;
Amaral, Vitor S. ;
Palacio, Fernando ;
Carlos, Luis D. .
ADVANCED MATERIALS, 2010, 22 (40) :4499-4504
[9]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[10]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818