Image Based Tumor Cells Identification Using Convolutional Neural Network and Auto Encoders

被引:16
|
作者
Wajeed, Mohammed Abdul [1 ]
Sreenivasulu, Vallamchetty [1 ]
机构
[1] Keshav Mem Inst Technol, Dept Comp Sci & Engn, Hyderabad 500029, India
关键词
convolutional neural network; region-convolutional neural network; tumor cells; pre processing; clustering; classification; tumor prediction; INTERFEROMETRIC PHASE MICROSCOPY; MOTILITY;
D O I
10.18280/ts.360510
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The convolutional neural network (CNN) and other neural networks (NNs) provide promising tools for robotized characterization of tumor cells. However, the tumor growth areas in ultrasound images are normally obscure, with uncertain edges. It is not acceptable to prepare ultrasound images straightforwardly with the CNN. To solve the problem, this paper puts forward a faster region-convolutional neural network (R-CNN) to identify tumor cells with the aid of auto encoders Taking two fully-connected layers with dropout and ReLU enactments as the base, the proposed faster R-CNN adopts 3D convolutional and max pooling layers, enabling the user to extract features from potential tumor growth areas. In addition, the thin and deep layers of the network were connected to facilitate the identification of blurry or small tumor growth areas. Experimental results show that the proposed faster R-CNN with auto encoders outperformed traditional data mining and artificial intelligence (AI) methods in prediction accuracy of tumor cells.
引用
收藏
页码:445 / 453
页数:9
相关论文
共 50 条
  • [31] Brain Tumor Detection and Classification Using an Optimized Convolutional Neural Network
    Aamir, Muhammad
    Namoun, Abdallah
    Munir, Sehrish
    Aljohani, Nasser
    Alanazi, Meshari Huwaytim
    Alsahafi, Yaser
    Alotibi, Faris
    DIAGNOSTICS, 2024, 14 (16)
  • [32] Image Compressed Sensing Using Convolutional Neural Network
    Shi, Wuzhen
    Jiang, Feng
    Liu, Shaohui
    Zhao, Debin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 375 - 388
  • [33] IMAGE RECONSTRUCTION USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Shireesha, Muthineni
    Yadav, Gargi
    Chandra, Saroj Kumar
    Bajpai, Manish Kumar
    2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
  • [34] Multifocus image fusion using convolutional neural network
    Yu Wen
    Xiaomin Yang
    Turgay Celik
    Olga Sushkova
    Marcelo Keese Albertini
    Multimedia Tools and Applications, 2020, 79 : 34531 - 34543
  • [35] Image dehazing using autoencoder convolutional neural network
    Richa Singh
    Ashwani Kumar Dubey
    Rajiv Kapoor
    International Journal of System Assurance Engineering and Management, 2022, 13 : 3002 - 3016
  • [36] Automatic Radar Waveform Recognition Based on Deep Convolutional Denoising Auto-encoders
    Zhou, Zhiwen
    Huang, Gaoming
    Chen, Haiyang
    Gao, Jun
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (09) : 4034 - 4048
  • [37] An image retrieval method of mammary cancer based on convolutional neural network
    Wang, Dan
    Zhao, Hongwei
    Li, Qingliang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (01) : 115 - 126
  • [38] Multifocus image fusion using convolutional neural network
    Wen, Yu
    Yang, Xiaomin
    Celik, Turgay
    Sushkova, Olga
    Albertini, Marcelo Keese
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (45-46) : 34531 - 34543
  • [39] Advancements in Image Classification using Convolutional Neural Network
    Sultana, Farhana
    Sufian, Abu
    Dutta, Paramartha
    2018 FOURTH IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2018, : 122 - 129
  • [40] GRAYSCALE IMAGE COLORIZATION USING A CONVOLUTIONAL NEURAL NETWORK
    Jwa, Minje
    Kang, Myungjoo
    JOURNAL OF THE KOREAN SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 2021, 25 (02) : 26 - 38