Continued fractions and transcendental numbers

被引:9
作者
Adamczewski, Boris
Bugeaud, Yann
Davison, Les
机构
[1] Univ Lyon 1, Inst Camille Jordan, CNRS, F-69622 Villeurbanne, France
[2] Univ Strasbourg 1, UFR Math, F-67084 Strasbourg, France
[3] Laurentian Univ, Dept Math & Comp Sci, Sudbury, ON P3E 2C6, Canada
关键词
continued fractions; transcendental numbers; subspace theorem;
D O I
10.5802/aif.2234
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this work is to present new families of transcendental continued fractions with bounded partial quotients. Our results are derived thanks to combinatorial transcendence criteria recently obtained by the first two authors in [3].
引用
收藏
页码:2093 / 2113
页数:21
相关论文
共 42 条
[1]   A Liouville-like approach for the transcendence of some real numbers [J].
Adamczewski, B .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (07) :511-514
[2]   On the complexity of algebraic numbers. [J].
Adamczewski, B ;
Bugeaud, Y ;
Luca, F .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (01) :11-14
[3]  
ADAMCZEWSKI B, MAILLET BAKER
[4]  
ADAMCZEWSKI B, IN PRESS ANN MATH
[5]  
ADAMCZEWSKI B, IN PRESS ACTA MATH
[6]  
Allouche J.-P., 2003, Automatic Sequences: Theory, Applications, Generalizations
[7]   Generalized perturbed symmetry [J].
Allouche, JP ;
Shallit, J .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (04) :401-411
[8]   Transcendence of Sturmian or morphic continued fractions [J].
Allouche, JP ;
Davison, JL ;
Queffélec, M ;
Zamboni, LQ .
JOURNAL OF NUMBER THEORY, 2001, 91 (01) :39-66
[9]  
ALLOUCHE JP, 2000, GAZETTE MATH, V84, P19
[10]  
ALLOUCHE JP, 1964, ACTA MATH, V111, P97