Improved Upper Bounds on the Domination Number of Graphs With Minimum Degree at Least Five

被引:15
作者
Bujtas, Csilla [1 ]
Klavzar, Sandi [2 ,3 ,4 ]
机构
[1] Univ Pannonia, Dept Comp Sci & Syst Technol, Veszprem, Hungary
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, Slovenia
[4] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
Domination number; Minimum degree; Greedy algorithm; CONNECTED CUBIC GRAPHS; GAME;
D O I
10.1007/s00373-015-1585-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An algorithmic upper bound on the domination number of graphs in terms of the order n and the minimum degree is proved. It is demonstrated that the bound improves best previous bounds for any . In particular, for , Xing et al. (Graphs Comb. 22:127-143, 2006) proved that . This bound is improved to 0.3440 n. For , Clark et al. (Congr. Numer. 132:99-123, 1998) established , while Bir et al. (Bull. Inst. Comb. Appl. 64:73-83, 2012) recently improved it to . Here the bound is further improved to . For , the best earlier bound 0.3088n is improved to gamma < 0.2927n.
引用
收藏
页码:511 / 519
页数:9
相关论文
共 24 条
[11]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[12]  
Imrich Wilfried, 2008, Topics in graph theory: graphs and their cartesian product
[13]   EXTREMAL PROBLEMS FOR GAME DOMINATION NUMBER [J].
Kinnersley, William B. ;
West, Douglas B. ;
Zamani, Reza .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) :2090-2107
[14]   An upper bound on the domination number of n-vertex connected cubic graphs [J].
Kostochka, A. V. ;
Stodolsky, B. Y. .
DISCRETE MATHEMATICS, 2009, 309 (05) :1142-1162
[15]   Domination number of cubic graphs with large girth [J].
Kral', Daniel ;
Skoda, Petr ;
Volec, Jan .
JOURNAL OF GRAPH THEORY, 2012, 69 (02) :131-142
[16]   Domination in graphs of minimum degree at least two and large girth [J].
Loewenstein, Christian ;
Rautenbach, Dieter .
GRAPHS AND COMBINATORICS, 2008, 24 (01) :37-46
[17]   Pairs of Disjoint Dominating Sets in Connected Cubic Graphs [J].
Loewenstein, Christian ;
Rautenbach, Dieter .
GRAPHS AND COMBINATORICS, 2012, 28 (03) :407-421
[18]   DOMINATION IN GRAPHS WITH MINIMUM DEGREE-2 [J].
MCCUAIG, W ;
SHEPHERD, B .
JOURNAL OF GRAPH THEORY, 1989, 13 (06) :749-762
[19]  
Ore O., 1962, C PUBLICATIONS
[20]  
Payan C., 1975, Cahiers Centre Etudes Recherche Oper, V17, P307