On a Serrin-type regularity criterion for the Navier-Stokes equations in terms of the pressure

被引:33
作者
Struwe, Michael [1 ]
机构
[1] ETH, CH-8092 Zurich, Switzerland
关键词
Navier-Stokes equations; regularity criteria;
D O I
10.1007/s00021-005-0198-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Serrin-type regularity result for Leray-Hopf solutions to the Navier-Stokes equations, extending a recent result of Zhou [28].
引用
收藏
页码:235 / 242
页数:8
相关论文
共 28 条
[1]  
Beirao da Veiga H., 1998, EQUATIONS DERIVEES P, P127
[2]   Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations [J].
Berselli, LC ;
Galdi, GP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (12) :3585-3595
[3]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[4]   Regularity criterion in terms of pressure for the Navier-Stokes equations [J].
Chae, DH ;
Lee, JH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (05) :727-735
[5]  
da Veiga HB, 2000, J MATH FLUID MECH, V2, P99
[6]  
daVeiga HB, 1995, CHINESE ANN MATH B, V16, P407
[7]  
DAVEIGA HB, 1987, INDIANA U MATH J, V36, P149
[8]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[9]   INITIAL VALUE-PROBLEM FOR NAVIER-STOKES EQUATIONS WITH DATA IN LP [J].
FABES, EB ;
JONES, BF ;
RIVIERE, NM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 45 (03) :222-&
[10]  
GALDI GP, 1979, ARCH RATIONAL MECH A, V69, P37