Quantum information entropy for one-dimensional system undergoing quantum phase transition

被引:27
作者
Song, Xu-Dong [1 ]
Dong, Shi-Hai [2 ]
Zhang, Yu [3 ]
机构
[1] Dalian Jiaotong Univ, Software Inst, Dalian 116028, Peoples R China
[2] Inst Politecn Nacl, Unidad Profes ALM, CIDETEC, Mexico City 07700, DF, Mexico
[3] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum information entropy; quantum phase transition; entropy uncertainty relation; ORTHOGONAL POLYNOMIALS; UNCERTAINTY RELATIONS; LAGUERRE-POLYNOMIALS; HARMONIC-OSCILLATOR; STRONG ASYMPTOTICS; POTENTIALS; MORSE; POSITION; WEIGHTS; MODEL;
D O I
10.1088/1674-1056/25/5/050302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S-x and the momentum entropy S-p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.
引用
收藏
页数:5
相关论文
共 41 条
[11]  
Dehesa J. S., 1997, METHODS APPL ANAL, V4, P91, DOI DOI 10.4310/MAA.1997.v4.n1.a7
[12]   Information-theoretic measures for Morse and Poschl-Teller potentials [J].
Dehesa, JS ;
Martínez-Finkelshtein, A ;
Sorokin, VN .
MOLECULAR PHYSICS, 2006, 104 (04) :613-622
[13]   Strong asymptotics of Laguerre polynomials and information entropies of two-dimensional harmonic oscillator and one-dimensional Coulomb potentials [J].
Dehesa, JS ;
Yanez, RJ ;
Aptekarev, AI ;
Buyarov, V .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) :3050-3060
[14]   The Noncommutative Landau Problem in Podolsky's Generalized Electrodynamics [J].
Diao Xin-Feng ;
Long Chao-Yun ;
Kong Bo ;
Long Zheng-Wen .
CHINESE PHYSICS LETTERS, 2015, 32 (04)
[15]   Quantum information entropies for a squared tangent potential well [J].
Dong, Shishan ;
Sun, Guo-Hua ;
Dong, Shi-Hai ;
Draayer, J. P. .
PHYSICS LETTERS A, 2014, 378 (03) :124-130
[16]  
Everett H., 1973, The Many World Interpretation of Quantum Mechanics
[17]   Fisher information for the position-dependent mass Schrodinger system [J].
Falaye, B. J. ;
Serrano, F. A. ;
Dong, Shi-Hai .
PHYSICS LETTERS A, 2016, 380 (1-2) :267-271
[18]  
Galindo A, 1978, QUANTUM MECH
[19]   A NOTE ON ENTROPY [J].
HIRSCHMAN, II .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (01) :152-156
[20]   Quantum phase transitions in mesoscopic systems [J].
Iachello, F ;
Zamfir, NV .
PHYSICAL REVIEW LETTERS, 2004, 92 (21) :212501-1