Quantum information entropy for one-dimensional system undergoing quantum phase transition

被引:27
作者
Song, Xu-Dong [1 ]
Dong, Shi-Hai [2 ]
Zhang, Yu [3 ]
机构
[1] Dalian Jiaotong Univ, Software Inst, Dalian 116028, Peoples R China
[2] Inst Politecn Nacl, Unidad Profes ALM, CIDETEC, Mexico City 07700, DF, Mexico
[3] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum information entropy; quantum phase transition; entropy uncertainty relation; ORTHOGONAL POLYNOMIALS; UNCERTAINTY RELATIONS; LAGUERRE-POLYNOMIALS; HARMONIC-OSCILLATOR; STRONG ASYMPTOTICS; POTENTIALS; MORSE; POSITION; WEIGHTS; MODEL;
D O I
10.1088/1674-1056/25/5/050302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S-x and the momentum entropy S-p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.
引用
收藏
页数:5
相关论文
共 41 条
[1]   Maximum-entropy technique with logarithmic constraints:: Estimation of atomic radial densities [J].
Angulo, JC ;
Antolín, J ;
Zarzo, A ;
Cuchí, JC .
EUROPEAN PHYSICAL JOURNAL D, 1999, 7 (04) :479-485
[2]   SPATIAL ENTROPY OF CENTRAL POTENTIALS AND STRONG ASYMPTOTICS OF ORTHOGONAL POLYNOMIALS [J].
APTEKAREV, AI ;
DEHESA, JS ;
YANEZ, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (09) :4423-4428
[3]   Quantum-information entropies of the eigenstates and the coherent state of the Poschl-Teller potential [J].
Atre, R ;
Kumar, A ;
Kumar, N ;
Panigrahi, PK .
PHYSICAL REVIEW A, 2004, 69 (05) :052107-1
[4]   Quantum information entropies of the eigenstates of the Morse potential [J].
Aydiner, Ekrem ;
Orta, Cenk ;
Sever, Ramazan .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (03) :231-237
[5]   INEQUALITIES IN FOURIER-ANALYSIS [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1975, 102 (01) :159-182
[6]  
Bialynicki-Birula I, 2010, ARXIV10014668QUANTPH
[7]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[8]   Asymptotics of the information entropy for Jacobi and Laguerre polynomials with varying weights [J].
Buyarov, VS ;
Dehesa, JS ;
Martínez-Finkelshtein, A ;
Saff, EB .
JOURNAL OF APPROXIMATION THEORY, 1999, 99 (01) :153-166
[9]   Information entropy of Gegenbauer polynomials [J].
Buyarov, VS ;
López-Artés, P ;
Martínez-Finkelshtein, A ;
Van Assche, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (37) :6549-6560
[10]   Semiclassical position and momentum information entropy for sech2 and a family of rational potentials [J].
Coffey, Mark W. .
CANADIAN JOURNAL OF PHYSICS, 2007, 85 (07) :733-743